Abstract

This work proposes a taut-leg deep-water mooring configuration with buoys, designed specifically to allow a quick and easy visual identification of the rupture of any mooring line of the system. This addresses one of the main concerns of the offshore oil and gas industry: the significant number of events of mooring line failure that has been recently observed in actual operations in deep and ultra-deep water scenarios; field experience indicates that, in current spread-mooring systems, several weeks may pass until a failure is detected. The proposed configuration also presents the additional advantages of reducing the mooring radius and the tensions on the top of the lines. The configuration is evaluated and compared with a standard taut-leg system, considering the same base case study of a typical deep-water FPSO, and using up-to-date numerical methods implemented into an in-house fully coupled nonlinear time-domain dynamic analysis tool. The results indicated that the proposed configuration provided significant improvements in the cost and performance of the mooring system, in terms of line lengths, mooring radii, tensions, and offsets; and confirmed that the buoy emerges and reaches the surface in the event of a line rupture, irrespective of the point where the line has broken. This indicates that the resulting configuration is a promising technical alternative to traditional standard taut-leg systems in deep and ultra-deep water scenarios.

References

1.
Chakrabarti
,
S. K.
,
2005
,
Handbook of Offshore Engineering—Volume II
,
Elsevier
,
New York
, pp.
663
1269
.
2.
Gordon
,
R. B.
,
Brown
,
M. G.
, and
Allen
,
E. M.
,
2014
, “Mooring Integrity Management A State-of-the-Art Review”, OTC 2014 OTC-25134_2014.
3.
Wang
,
P.
,
Tian
,
X.
,
Peng
,
T.
, and
Luo
,
Y.
,
2018
, “
A Review of the State-of-the-Art Developments in the Field Monitoring of Offshore Structures
,”
Ocean Eng.
,
147
, pp.
148
164
.
4.
API
,
2008
,
API RP 2SK: Design and Analysis of Stationkeeping Systems for Floating Structures
, 3rd ed.,
American Petroleum Institute
,
Washington, DC
, pp.
1
241
.
5.
API
,
2017
, “Mooring Failure Detection Systems for Floating Offshore Installations: Mooring Integrity Joint Industry Project Phase 2—Research Report RR1097,” GL Noble Denton, No 1 The Exchange, 62 Market Street, Aberdeen AB11 5JP.
6.
Wang
,
S.
, and
Lu
,
P.
,
2016
, “
On the Monitoring of Mooring System Performance
,”
Proceedings of the 21st Offshore Symposium, Society of Naval Architects and Marine Engineers
. Paper No. SNAME_OS16_09.
7.
Mavrakos
,
S. A.
, and
Chatjigeorgiou
,
J.
,
1997
, “
Dynamic Behaviour of Deep Water Mooring Lines With Submerged Buoys
,”
Comput. Struct.
64
(
1
), pp.
819
835
.
8.
Smith
,
R. J.
, and
MacFarlane
,
C. J.
,
2001
, “
Statics of a Three Component Mooring Line
,”
Ocean Eng.
28
(
7
), pp.
899
914
.
9.
Surendran
,
S.
, and
Goutam
,
M.
,
2009
, “
Reduction in the Dynamic Amplitudes of Moored Cable Systems
,”
Ships Offshore Struct.
4
(
2
), pp.
145
163
.
10.
Yan
,
J.
,
Qiao
,
D.
, and
Ou
,
J.
,
2018
, “
Optimal Design and Hydrodynamic Response Analysis of Deep Water Mooring System With Submerged Buoys
,”
Ships Offshore Struct.
,
13
(
5
), pp.
476
487
.
11.
Vicente
,
P. C.
,
Falcão
,
A. F.
, and
Justino
,
P. J.
,
2011
, “
Slack-Chain Mooring Configuration Analysis of a Floating Wave Energy Converter
,”
Proceedings of the 26th International Workshop on Water Waves and Floating Bodies
,
Athens, Greece
,
April
.
12.
Yuan
,
Z.-M.
,
Incecik
,
A.
, and
Ji
,
C.
,
2014
, “
Numerical Study on a Hybrid Mooring System With Clump Weights and Buoys
,”
Ocean Eng.
,
88
, pp.
1
11
.
13.
Ji
,
C.-Y.
,
Yuan
,
Z.-M.
, and
Chen
,
M.-L.
,
2011
, “
Study on a New Mooring System Integrating Catenary With Taut Mooring
,”
China Ocean Eng.
25
(
3
), pp.
427
440
.
14.
Jacob
,
B. P.
,
Bahiense
,
R. D. A.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part I: Coupling Formulations
,”
Ocean Eng.
,
55
, pp.
206
218
.
15.
Meirovitch
,
L.
,
1970
,
Methods of Analytical Dynamics
,
McGraw-Hill Book Company
,
New York
, pp.
1
524
.
16.
Correa
,
F. N.
,
Jacob
,
B. P.
, and
Mansur
,
W. J.
,
2010
, “
Formulation of an Efficient Hybrid Time-Frequency Domain Solution Procedure for Linear Structural Dynamic Problems
,”
Comput. Struct.
88
(
5–6
), pp.
331
346
.
17.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
1
1037
.
18.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1994
, “
An Optimized Implementation of the Newmark/Newton-Raphson Algorithm for the Time Integration of Non-Linear Problems
,”
Commun. Numer. Methods Eng.
10
(
12
), pp.
983
992
.
19.
Chakrabarti
,
S. K.
,
1987
,
Hydrodynamics of Offshore Structures
,
Computational Mechanics Publications
,
Boston, MJ
.
20.
Morison
,
J. R.
,
O’Brien
,
M. P.
, and
Johnson
,
J. W.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
AIME Petrol. Trans.
,
189
(
05
), pp.
149
154
.
21.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Div.
85
(
3
), pp.
67
94
.
22.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zienkiewicz
,
O. C.
,
1980
, “
An Alpha Modification of Newmark’s Method
,”
Int. J. Numer Methods Eng.
15
(
10
), pp.
1562
1566
.
23.
Jacob
,
B. P.
, and
Ebecken
,
N. F. F.
,
1993
, “
Adaptive Time Integration of Nonlinear Structural Dynamic Problems
,”
Eur. J. Mech. A Solids
12
(
2
), pp.
277
298
.
24.
Geradin
,
M.
,
Hogge
,
M.
, and
Idelsohn
,
S.
,
1983
, “Implicit Finite Element Methods,”
Computational Methods for Transient Analysis
,
T
Belytschko
, and
TJR
Hughes
, eds.,
Elsevier Science Publishers
,
Amsterdam
, pp.
417
471
.
25.
Bahiense
,
R. A.
,
de Lima
,
A. L.
,
da Silva
,
D. M. L.
,
Jacob
,
B. P.
, and
Rodrigues
,
M. V.
,
2008
, “
Assessment of Weak and Strong Coupling Formulations for the Analysis of Offshore Floating Systems (in Portuguese)
,”
CILAMCE 2008—XXIX Iberian Latin-American Congress on Computational Methods in Engineering PAP0425
,
Maceió, AL, Brazil
,
November
, pp.
1
17
.
26.
Senra
,
S. F.
,
Jacob
,
B. P.
,
Correa
,
F. N.
,
Jacovazzo
,
B. M.
,
de Lima
,
A. L.
,
de Lacerda
,
TÂG
, and
Fucatu
,
C. H.
,
2010
, “
Assessment and Calibration of Numerical Coupled Models of a Deep-Draft Semisubmersible Platform Based on Model Tests
,”
ISOPE 2010—Twentieth International Offshore and Polar Engineering Conference 10TPC-1188
,
Beijing, China
,
June
, pp.
1
10
.
27.
Lee
,
C. H.
,
1998
,
WAMIT—A Radiation-Diffraction Panel Program for Wave-Body Interactions, User Manual
,
Department of Ocean Engineering, MIT
,
Chestnut Hill, MA
, pp.
1
302
.
28.
DNV
,
2015
, “DNVGL-OS-E301 Position Mooring (July 2015)”
29.
Corrêa
,
F. N.
,
Eduardo
,
R. F.
, and
Jacob
,
B. P.
,
2010
,
Modeling the Mooring Lines, Risers and Buoys of the Cascade-Chinook Floating Production System at the Gulf of Mexico—Internal Report (in Portuguese)
,
LAMCSO—Laboratory of Computer Methods and Offshore Systems
,
Rio de Janeiro—RJ, Brazil
, pp.
1
85
.
30.
Machado-Filho
,
R. Z.
,
Mastrangelo
,
C. F.
,
Daniel
,
J.
,
Xia
,
J.
,
Edwards
,
R. Y.
,
Goebel
,
R.
, and
Ling
,
M. S.
,
2013
, “
Cascade/Chinook Disconnectable FPSO, Free Standing Hybrid Risers Monitoring Via Acoustic Control/Communications
,”
Offshore Technology Conference Brasil
,
Rio de Janeiro, Brazil
,
October
, p.
OTC-24495-MS
, pp. 1–16.
31.
API
,
2001
, “API RP 2SM Recommended Practice for Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring”.
32.
Chaplin
,
C. R.
, and
Del Vecchio
,
C. J. M.
,
1992
, “
Appraisal of Lightweight Moorings for Deep Water
,”
Offshore Technology Conference
,
Houston, TX
,
May
, Paper No. OTC-6965-MS, pp.
1
10
.
33.
Ang
,
A. H. S.
, and
Tang
,
W.
,
1984
,
Probability Concepts in Engineering Planning and Design
, vol.
2
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1
608
.
You do not currently have access to this content.