Abstract

Global warming has extensively transformed Arctic sea ice from continuous level-ice coverage to unconsolidated ice floe fields. Whilst the ice floes have a mixture of different sizes and their locations are randomly distributed, contemporary computational models lack effective methods to generate floe fields with such a natural pattern. This work introduces two original tools that can generate realistic ice floe fields for computational models. They are a sequential generator that sequentially handles ice floes one by one, and a genetic generator based upon a genetic algorithm. Demonstration of the tools is given, presenting samples of generating various shapes of floes and arbitrary mixtures of different shapes. Furthermore, an example is provided that combines the generated floe field with computational work modeling a ship transiting in ice floes. In addition, the source code of the tools is sharable to the public.

References

1.
Stroeve
,
J. C.
,
Kattsov
,
V.
,
Barrett
,
A.
,
Serreze
,
M.
,
Pavlova
,
T.
,
Holland
,
M.
, and
Meier
,
W. N.
,
2012
, “
Trends in Arctic Sea Ice Extent From CMIP5, CMIP3 and Observations
,”
Geophys. Res. Lett.
,
39
(
16
), p. L16502.
2.
Thomson
,
J.
,
Ackley
,
S.
,
Girard-Ardhuin
,
F.
,
Ardhuin
,
F.
,
Babanin
,
A.
,
Boutin
,
G.
,
Brozena
,
J.
, et al
,
2018
, “
Overview of the Arctic Sea State and Boundary Layer Physics Program
,”
J. Geophys. Res. Oceans
,
123
(
12
), pp.
8674
8687
.
3.
Alberello
,
A.
,
Onorato
,
M.
,
Bennetts
,
L.
,
Vichi
,
M.
,
Eayrs
,
C.
,
MacHutchon
,
K.
, and
Toffoli
,
A.
,
2019
, “
Brief Communication: Pancake Ice Floe Size Distribution During the Winter Expansion of the Antarctic Marginal Ice Zone
,”
Cryosphere
,
13
(
1
), pp.
41
48
.
4.
Alberello
,
A.
,
Bennetts
,
L.
,
Heil
,
P.
,
Eayrs
,
C.
,
Vichi
,
M.
,
MacHutchon
,
K.
,
Onorato
,
M.
, and
Toffoli
,
A.
,
2020
, “
Drift of Pancake Ice Floes in the Winter Antarctic Marginal Ice Zone During Polar Cyclones
,”
J. Geophys. Res. Oceans
,
125
(
3
), p.
e2019JC015418
.
5.
Li
,
F.
,
Lu
,
L.
,
Suominen
,
M.
, and
Kujala
,
P.
,
2021
, “
Short-Term Statistics of Ice Loads on Ship Bow Frames in Floe Ice Fields: Full-Scale Measurements in the Antarctic Ocean
,”
Mar. Struct.
,
80
, p.
103049
.
6.
Montiel
,
F.
,
Squire
,
V.
, and
Bennetts
,
L.
,
2016
, “
Attenuation and Directional Spreading of Ocean Wave Spectra in the Marginal Ice Zone
,”
J. Fluid Mech.
,
790
, pp.
492
522
.
7.
Wadhams
,
P.
,
2017
,
A Farewell to Ice: A Report From the Arctic
,
Oxford University Press
,
Oxford, UK
.
8.
Squire
,
V. A.
,
2020
, “
Ocean Wave Interactions With Sea Ice: A Reappraisal
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
37
60
.
9.
Smith
,
L. C.
, and
Stephenson
,
S. R.
,
2013
, “
New Trans-Arctic Shipping Routes Navigable by Midcentury
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
13
), pp.
E1191
E1195
.
10.
Porter
,
R.
,
2019
, “
The Coupling Between Ocean Waves and Rectangular Ice Sheets
,”
J. Fluids Struct.
,
84
, pp.
171
181
.
11.
Huang
,
L.
,
Li
,
M.
,
Igrec
,
B.
,
Cardiff
,
P.
,
Stagonas
,
D.
, and
Thomas
,
G.
,
2019
, Simulation of a Ship Advancing in Floating Ice Floes,
Proceedings of the 25th International Conference on Port and Ocean Engineering Under Arctic Conditions
,
Delft, The Netherlands
,
June 9–13
,
Port and Ocean Engineering under Arctic Conditions (POAC)
.
12.
Løset
,
S.
,
1994
, “
Discrete Element Modelling of a Broken Ice Field—Part II: Simulation of Ice Loads on a Boom
,”
Cold Reg. Sci. Technol.
,
22
(
4
), pp.
349
360
.
13.
Dai
,
M.
,
Shen
,
H. H.
,
Hopkins
,
M. A.
, and
Ackley
,
S. F.
,
2004
, “
Wave Rafting and the Equilibrium Pancake Ice Cover Thickness
,”
J. Geophys. Res. Oceans
,
109
(
C7
), p. C07023.
14.
Sun
,
S.
, and
Shen
,
H. H.
,
2012
, “
Simulation of Pancake Ice Load on a Circular Cylinder in a Wave and Current Field
,”
Cold Reg. Sci. Technol.
,
78
, pp.
31
39
.
15.
Janßen
,
C. F.
,
Mierke
,
D.
, and
Rung
,
T.
,
2017
, “
On the Development of an Efficient Numerical Ice Tank for the Simulation of Fluid-Ship-Rigid-Ice Interactions on Graphics Processing Units
,”
Comput. Fluids
,
155
, pp.
22
32
.
16.
Herman
,
A.
,
Cheng
,
S.
, and
Shen
,
H. H.
,
2019
, “
Wave Energy Attenuation in Fields of Colliding Ice Floes–Part 1: Discrete-Element Modelling of Dissipation Due to Ice–Water Drag
,”
Cryosphere
,
13
(
11
), pp.
2887
2900
.
17.
Peter
,
M. A.
, and
Meylan
,
M. H.
,
2010
, “
Water-Wave Scattering by Vast Fields of Bodies
,”
SIAM J. Appl. Math.
,
70
(
5
), pp.
1567
1586
.
18.
Williams
,
T. D.
,
Bennetts
,
L. G.
,
Squire
,
V. A.
,
Dumont
,
D.
, and
Bertino
,
L.
,
2013
, “
Wave–Ice Interactions in the Marginal Ice Zone. Part 1: Theoretical Foundations
,”
Ocean Model.
,
71
, pp.
81
91
.
19.
Williams
,
T. D.
,
Bennetts
,
L. G.
,
Squire
,
V. A.
,
Dumont
,
D.
, and
Bertino
,
L.
,
2013
, “
Wave–Ice Interactions in the Marginal Ice Zone. Part 2: Numerical Implementation and Sensitivity Studies Along 1d Transects of the Ocean Surface
,”
Ocean Model.
,
71
, pp.
92
101
.
20.
Bennetts
,
L.
, and
Williams
,
T.
,
2015
, “
Water Wave Transmission by an Array of Floating Discs
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
471
(
2173
), p.
20140698
.
21.
Guo
,
W.
,
Zhao
,
Q. S.
,
Tian
,
Y. K.
, and
Zhang
,
W. C.
,
2020
, “
Research on Total Resistance of Ice-Going Ship for Different Floe Ice Distributions Based on Virtual Mass Method
,”
Int. J. Nav. Archit. Ocean Eng.
,
12
, pp.
957
966
.
22.
Hopkins
,
M. A.
,
Frankenstein
,
S.
, and
Thorndike
,
A. S.
,
2004
, “
Formation of an Aggregate Scale in Arctic Sea Ice
,”
J. Geophys. Res. Oceans
,
109
(
C1
), p. C01032.
23.
van den Berg
,
M.
,
Lubbad
,
R.
, and
Løset
,
S.
,
2019
, “
The Effect of Ice Floe Shape on the Load Experienced by Vertical-Sided Structures Interacting With a Broken Ice Field
,”
Mar. Struct.
,
65
, pp.
229
248
.
24.
Yang
,
B.
,
Sun
,
Z.
,
Zhang
,
G.
,
Wang
,
Q.
,
Zong
,
Z.
, and
Li
,
Z.
,
2021
, “
Numerical Estimation of Ship Resistance in Broken Ice and Investigation on the Effect of Floe Geometry
,”
Mar. Struct.
,
75
, p.
102867
.
25.
Metrikin
,
I.
,
2014
, “
A Software Framework for Simulating Stationkeeping of a Vessel in Discontinuous Ice
,”
Model. Identif. Control.
,
35
(
4
), pp.
211
248
.
26.
Yulmetov
,
R.
,
Lubbad
,
R.
, and
Løset
,
S.
,
2016
, “
Planar Multi-Body Model of Iceberg Free Drift and Towing in Broken Ice
,”
Cold Reg. Sci. Technol.
,
121
, pp.
154
166
.
27.
Colbourne
,
D.
,
2000
, “
Scaling Pack Ice and Iceberg Loads on Moored Ship Shapes
,”
Ocean. Eng. Int.
,
4
(
1
), pp.
39
45
.
28.
Parmiggiani
,
F.
,
Moctezuma-Flores
,
M.
,
Wadhams
,
P.
, and
Aulicino
,
G.
,
2019
, “
Image Processing for Pancake Ice Detection and Size Distribution Computation
,”
Int. J. Remote Sens.
,
40
(
9
), pp.
3368
3383
.
29.
Roach
,
L. A.
,
Smith
,
M. M.
, and
Dean
,
S. M.
,
2018
, “
Quantifying Growth of Pancake Sea Ice Floes Using Images From Drifting Buoys
,”
J. Geophys. Res. Oceans
,
123
(
4
), pp.
2851
2866
.
30.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
31.
Toyota
,
T.
,
Kohout
,
A.
, and
Fraser
,
A. D.
,
2016
, “
Formation Processes of Sea Ice Floe Size Distribution in the Interior Pack and Its Relationship to the Marginal Ice Zone off East Antarctica
,”
Deep Sea Res. Part II Top. Stud. Oceanogr.
,
131
, pp.
28
40
.
32.
Passerotti
,
G.
,
Bennetts
,
L. G.
,
Alberello
,
A.
,
Puolakka
,
O.
,
Dolatshah
,
A.
,
Monbaliu
,
J.
, and
Toffoli
,
A.
,
2021
, “
Interactions Between Irregular Wave Fields and Sea Ice: A Physical Model for Wave Attenuation and Ice Break up
,”
J. Phys. Oceanogr.
33.
Hopkins
,
M. A.
, and
Tuhkuri
,
J.
,
1999
, “
Compression of Floating Ice Fields
,”
J. Geophys. Res. Oceans
,
104
(
C7
), pp.
15815
15825
.
34.
Huang
,
L.
,
Tuhkuri
,
J.
,
Igrec
,
B.
,
Li
,
M.
,
Stagonas
,
D.
,
Toffoli
,
A.
,
Cardiff
,
P.
, and
Thomas
,
G.
,
2020
, “
Ship Resistance When Operating in Floating Ice Floes: A Combined CFD & DEM Approach
,”
Mar. Struct.
,
74
, p.
102817
.
35.
Ryan
,
C.
,
Huang
,
L.
,
Li
,
Z.
,
Ringsberg
,
J. W.
, and
Thomas
,
G.
,
2021
, “
An Arctic Ship Performance Model for Sea Routes in Ice-Infested Waters
,”
Appl. Ocean Res.
,
117
, p.
102950
.
36.
Li
,
Z.
,
Ryan
,
C.
,
Huang
,
L.
,
Ding
,
L.
,
Ringsberg
,
J. W.
, and
Thomas
,
G.
,
2021
, “
A Comparison of Two Ship Performance Models Against Full-Scale Measurements on a Cargo Ship on the Northern Sea Route
,”
Ships Offshore Struct.
,
16
(
S1
), pp.
237
244
.
37.
Huang
,
L.
,
Li
,
Z.
,
Ryan
,
C.
,
Ringsberg
,
J. W.
,
Pena
,
B.
,
Li
,
M.
,
Ding
,
L.
, and
Thomas
,
G.
,
2021
, “
Ship Resistance When Operating in Floating Ice Floes: Derivation, Validation, and Application of an Empirical Equation
,”
Mar. Struct.
,
79
, p.
103057
.
38.
Hendrikse
,
H.
, and
Nord
,
T. S.
,
2019
, “
Dynamic Response of an Offshore Structure Interacting With an Ice Floe Failing in Crushing
,”
Mar. Struct.
,
65
, pp.
271
290
.
39.
Li
,
F.
, and
Huang
,
L.
,
2022
, “
A Review of Computational Simulation Methods for a Ship Advancing in Broken Ice
,”
J. Mar. Sci. Eng.
,
10
(
2
), p.
165
.
40.
Meylan
,
M.
, and
Bennetts
,
L.
,
2018
, “
Three-Dimensional Time-Domain Scattering of Waves in the Marginal Ice Zone
,”
Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci.
,
376
(
2129
), p.
20170334
.
41.
Huang
,
L.
,
Ren
,
K.
,
Li
,
M.
,
Tuković
,
Ž
,
Cardiff
,
P.
, and
Thomas
,
G.
,
2019
, “
Fluid-Structure Interaction of a Large Ice Sheet in Waves
,”
Ocean Eng.
,
182
, pp.
102
111
.
42.
Yiew
,
L. J.
,
Bennetts
,
L.
,
Meylan
,
M.
,
Thomas
,
G.
, and
French
,
B.
,
2017
, “
Wave-Induced Collisions of Thin Floating Disks
,”
Phys. Fluids
,
29
(
12
), p.
127102
.
43.
Tavakoli
,
S.
, and
Babanin
,
A. V.
,
2021
, “
Wave Energy Attenuation by Drifting and Non-Drifting Floating Rigid Plates
,”
Ocean Eng.
,
226
, p.
108717
.
You do not currently have access to this content.