Abstract

Stochastic wave properties are crucial for the design of offshore structures. Short-crested seas are commonly seen at the sites of offshore structures, especially during storm events. A long time duration is required in order to obtain the statistical properties, which is challenging for numerical simulations. In this scenario, a potential flow solver is ideal due to its computational efficiency. A procedure of reproducing accurate short-crested sea states using the open-source fully nonlinear potential flow model REEF3D::FNPF is presented in the paper. The procedure examines the sensitivity of the resolutions in space and time as well as the arrangements of wave gauge arrays. A narrow band power spectrum and a mildly spreading directional spreading function are simulated, and an equal energy method is used to generate input waves and avoid phase-locking. REEF3D::FNPF solves the Laplace equation together with the boundary conditions using a finite difference method. A sigma grid is used in the vertical direction and the vertical grid clustering follows the principle of constant truncation error. High-order discretization methods are implemented in space and time. Message passing interface is used for high performance computation using multiple processors. Three-hour simulations are performed in full-scale at a hypothetic offshore site with constant water depth. The significant wave height, peak period, kurtosis, skewness and ergodicity are examined in the numerically generated wave field. The stochastic wave properties in the numerical wave tank (NWT) using REEF3D::FNPF match the input wave conditions with high fidelity.

References

1.
Booij
,
N.
,
Ris
,
R. C.
, and
Holthuijsen
,
L. H.
,
1999
, “
A Third-Generation Wave Model for Coastal Regions, 1. Model Description and Validation
,”
J. Geophys. Res.
,
104
(
C4
), pp.
7649
7666
.
2.
Madsen
,
P. A.
,
Murray
,
R.
, and
Sørensen
,
O. R.
,
1991
, “
A New Form of the Boussinesq Equations With Improved Linear Dispersion Characteristics
,”
Coast. Eng.
,
15
(
4
), pp.
371
388
.
3.
Nwogu
,
O.
,
1993
, “
Alternative Form of Boussinesq Equations for Nearshore Wave Propagation
,”
J. Waterways Port Coast. Ocean Eng.
,
119
(
6
), pp.
618
638
.
4.
Li
,
B.
, and
Fleming
,
C. A.
,
1997
, “
A Three Dimensional Multigrid Model for Fully Nonlinear Water Waves
,”
Coast. Eng.
,
30
(
3
), pp.
235
258
.
5.
Grilli
,
S. T.
,
Subramanya
,
R.
,
Svendsen
,
I. A.
, and
Veeramony
,
J.
,
1994
, “
Shoaling of Solitary Waves on Plane Beaches
,”
J. Waterway Port Coast. Ocean Eni.
,
120
(
6
), pp.
609
628
.
6.
Grilli
,
S. T.
, and
Horrillo
,
J.
,
1997
, “
Numerical Generation and Absorption of Fully Nonlinear Periodic Waves
,”
J. Eng. Mech.
,
123
(
10
), pp.
1060
1069
.
7.
Grilli
,
S. T.
,
Guyenne
,
P.
, and
Dias
,
F.
,
2001
, “
A Fully Non-Linear Model for Three-Dimensional Overturning Waves Over An Arbitrary Bottom
,”
Int. J. Numer. Methods Fluids
,
35
(
7
), pp.
829
867
.
8.
Brink
,
F.
,
Izsák
,
F.
, and
van der Vegt
,
J. J. W.
,
2017
, “
Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves
,”
J. Sci. Comput.
,
73
(
1
), pp.
366
394
.
9.
Ma
,
Q. W.
,
Wu
,
G. X.
, and
Eatock Taylor
,
R.
,
2001
, “
Finite Element Simulation of Fully Non-Linear Interaction Between Vertical Cylinders and Steep Waves. Part 1: Methodology and Numerical Procedure
,”
Int. J. Numer. Methods Fluids
,
36
(
3
), pp.
265
285
.
10.
Ma
,
Q. W.
,
Wu
,
G. X.
, and
Eatock Taylor
,
R.
,
2001
, “
Finite Element Simulations of Fully Non-Linear Interaction Between Vertical Cylinders and Steep Waves. Part 2: Numerical Results and Validation
,”
Int. J. Numer. Methods Fluids
,
36
(
3
), pp.
287
308
.
11.
Ma
,
Q.
, and
Yan
,
S.
,
2006
, “
Quasi ALE Finite Element Method for Nonlinear Water Waves
,”
J. Comput. Phys.
,
212
(
1
), pp.
52
72
.
12.
Shao
,
Y.-L.
, and
Faltinsen
,
O. M.
,
2012
, “
Towards Efficient Fully-Nonlinear Potential-Flow Solvers in Marine Hydrodynamics
,”
Volume 4: Offshore Geotechnics; Ronald W. Yeung Honoring Symposium on Offshore and Ship Hydrodynamics of International Conference on Offshore Mechanics and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
369
380
.
13.
Shao
,
Y.-L.
, and
Faltinsen
,
O. M.
,
2014
, “
A Harmonic Polynomial Cell (HPC) Method for 3D Laplace Equation With Application in Marine Hydrodynamics
,”
J. Comput. Phys.
,
274
, pp.
312
332
.
14.
Shao
,
Y.-L.
, and
Faltinsen
,
O.
,
2014
, “
Fully-Nonlinear Wave-Current-Body Interaction Analysis by a Harmonic Polynomial Cell Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031301
.
15.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touzé
,
D.
, and
Ferrant
,
P.
,
2012
, “
A Modified High-Order Spectral Method for Wavemaker Modeling in a Numerical Wave Tank
,”
Eur. J. Mech. - B/Fluids
,
34
, pp.
19
34
.
16.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touzé
,
D.
, and
Ferrant
,
P.
,
2016
, “
HOS-Ocean: Open-Source Solver for Nonlinear Waves in Open Ocean Based on High-Order Spectral Method
,”
Comput. Phys. Commun.
,
203
, pp.
245
254
.
17.
Yates
,
M. L.
, and
Benoit
,
M.
,
2015
, “
Accuracy and Efficiency of Two Numerical Methods of Solving the Potential Flow Problem for Highly Nonlinear and Dispersive Water Waves
,”
Int. J. Numer. Methods Fluids
,
77
(
10
), pp.
616
640
.
18.
Bingham
,
H. B.
, and
Zhang
,
H.
,
2007
, “
On the Accuracy of Finite-Difference Solutions for Nonlinear Water Waves
,”
J. Eng. Math.
,
58
(
1
), pp.
211
228
.
19.
Engsig-Karup
,
A.
,
Bingham
,
H.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-Order Model for 3D Nonlinear Water Waves
,”
J. Comput. Phys.
,
228
(
6
), pp.
2100
2118
.
20.
Bihs
,
H.
,
Wang
,
W.
,
Pakozdi
,
C.
, and
Kamath
,
A.
,
2020
, “
REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
4
), p.
041902
.
21.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
22.
Aggarwal
,
A.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Chella
,
M. A.
,
2019
, “
Characteristics of Breaking Irregular Wave Forces on a Monopile
,”
Appl. Ocean Res.
,
90
, p.
101846
.
23.
Chella
,
M. A.
,
Bihs
,
H.
, and
Myrhaug
,
D.
,
2019
, “
Wave Impact Pressure and Kinematics Due to Breaking Wave Impingement on a Monopile
,”
J. Fluids Struct.
,
86
, pp.
94
123
.
24.
Aggarwal
,
A.
,
Bihs
,
H.
,
Shirinov
,
S.
, and
Myrhaug
,
D.
,
2019
, “
Estimation of Breaking Wave Properties and Their Interaction With a Jacket Structure
,”
J. Fluids Struct.
,
91
, p.
102722
.
25.
Wang
,
W.
,
Kamath
,
A.
,
Pákozdi
,
C.
, and
Bihs
,
H.
,
2019
, “
Investigation of Focusing Wave Properties in a Numerical Wave Tank With a Fully Nonlinear Potential Flow Model
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
375
.
26.
Nwogu
,
O.
,
1989
, “
Maximum Entropy Estimation of Directional Wave Spectra From An Array of Wave Probes
,”
Appl. Ocean Res.
,
11
(
4
), pp.
176
182
.
27.
Ochi
,
M. K.
,
1998
,
Ocean Waves: The Stochastic Approach
,
Cambridge University Press
,
Cambridge, UK
.
28.
Panicker
,
N. N.
, and
Borgman
,
L. E.
,
1970
,
Directional Spectra from Wave-Gage Arrays
,
Coastal Engineering Proceedings
, pp.
117
136
.
29.
Stansberg
,
C. T.
,
1998
,
On the Fourier Series Decomposition of Directional Wave Spectra
,
International Society of Offshore and Polar Engineers
,
Montreal, Canada
, p.
8
.
30.
Tannuri
,
E. A.
,
Mello
,
P. C.
,
Sales
,
J. S.
,
Simos
,
A. N.
, and
Matos
,
V. L. F.
,
2007
, “
Estimation of Directional Wave Spectrum Using a Wave-Probe Array
,”
Mar. Syst. Ocean Technol.
,
3
(
2
), pp.
123
129
.
31.
Benoit
,
M.
, and
Teisson
,
C.
,
1994
, “
Laboratory Comparison of Directional Wave Measurement Systems and Analysis Techniques
,”
24th International Conference on Coastal Engineering
,
Kobe, Japan
,
Oct. 23–28
, pp.
42
56
.
32.
van der Vorst
,
H.
,
1992
, “
BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
13
(
2
), pp.
631
644
.
33.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
34.
Shu
,
C. W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
35.
Mayer
,
S.
,
Garapon
,
A.
, and
Sørensen
,
L. S.
,
1998
, “
A Fractional Step Method for Unsteady Free Surface Flow With Applications to Non-Linear Wave Dynamics
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
293
315
.
36.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFOAM
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
37.
DNV
,
2011
, “
Modelling and Analysis of Marine Operations
,” Standard DNV-RP-H103, Det Norske Veritas, Veritasveien 1, Høvik, Norway, April.
38.
Mitsuyasu
,
H.
,
1975
, “
Observations of the Directional Spectrum of Ocean Waves Using a Clover-Leaf Buoy
,”
J. Phys. Oceangr.
,
5
(
4
), pp.
750
760
.
39.
Duarte
,
T.
,
Gueydon
,
S.
,
Jonkman
,
J.
, and
Sarmento
,
A.
,
2014
, “
Computation of Wave Loads Under Multidirectional Sea States for Floating Offshore Wind Turbines
,” p.
V09BT09A023
.
40.
Jefferys
,
E.
,
1987
, “
Directional Seas Should Be Ergodic
,”
Appl. Ocean Res.
,
9
(
4
), pp.
186
191
.
41.
Baquet
,
A.
,
Kim
,
J.
, and
Huang
,
Z. J
,
2017
, “
Numerical Modeling Using CFD and Potential Wave Theory for Three-Hour Nonlinear Irregular Wave Simulations
,”
Vol. Volume 1: Offshore Technology of International Conference on Offshore Mechanics and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, p. V001T01A002.
42.
Huang
,
Z. J.
, and
Guo
,
Q.
,
2017
, “
Semi-Empirical Crest Distributions of Long-Crest Nonlinear Waves of Three-Hour Duration
,”
36th International Conference on Offshore Mechanics and Arctic Engineering Volume 1: Offshore Technology
,
Trondheim, Norway
,
June 25–30
, p. V001T01A038.
43.
Huang
,
Z.
, and
Zhang
,
Y
,
2018
, “
Semi-Empirical Single Realization and Ensemble Crest Distributions of Long-Crest Nonlinear Waves
,”
37th International Conference on Offshore Mechanics and Arctic Engineering Volume 1: Offshore Technology
,
Madrid, Spain
,
June 17–22
.
44.
Pakozdi
,
C.
,
Kamath
,
A.
,
Wang
,
W.
, and
Bihs
,
H
,
2020
, “
Representation of Breaking Wave Kinematics in the Fully Nonlinear Potential Flow Model REEF3D::FNPF
,”
39th International Conference on Ocean, Offshore and Arctic Engineering Volume 8: CFD and FSI
,
Virtual, Online
,
Aug. 3–7
, p. V001T01A032.
45.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
O.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
(
Supplement C
), pp.
191
208
.
46.
Pakozdi
,
C.
,
Wang
,
W.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2019
, “
Definition of the Vertical Spacing of a Sigma Grid Based on the Constant Truncation Error
,”
10th National Conference on Computational Mechanics, MekIT19
,
Trondheim, Norway
,
June 2–3
.
47.
Pakozdi
,
C.
,
Fouques
,
S.
,
Thys
,
M.
,
Kamath
,
A.
,
Wang
,
W.
,
Dadmarzi
,
F. H.
,
Bachynski
,
E.
, and
Bihs
,
H
,
2020
, “
Validation of Numerical Wave Tank Simulations Using REEF3D With Jonswap Spectra in Intermediate Water Depth
,”
39th International Conference on Offshore Mechanics and Arctic Engineering Volume 1: Offshore Technology
,
Virtual, Online
,
Aug. 3–7
, p. V001T01A012.
48.
Fouques
,
S.
,
Croonenborghs
,
E.
,
Lim
,
H.
,
Kim
,
J.
,
Canard
,
M.
,
Ducrozet
,
G.
,
Bouscasse
,
B.
,
Koop
,
A.
,
Zhao
,
B.
,
Wang
,
W.
, and
Bihs
,
H
,
2021
, “
Qualification Criteria for the Verification of Numerical Waves – Part 1: Potential-Based Numerical Wave Tank (PNWT)
,”
40th International Conference on Offshore Mechanics and Arctic Engineering Volume 6: CFD Modeling Practice and Verification
,
Virtual, Online
,
June 21–30
.
You do not currently have access to this content.