Abstract

A recent model to predict vortex-induced vibrations of a rigid cylinder is analyzed, and its response is compared with different experimental data presented in the literature. One database with the tuning parameters for different mass ratios, damping ratios, Reynolds number, and Strouhal number is presented. This article provides a set of predefined tuning parameters for different experimental conditions. We presented the results of the cross-flow and in-line reduced amplitudes, the mean drag coefficient, the lift coefficient, and the cross-flow reduced frequency, all versus the reduced velocity. Also, an equation to estimate the cross-flow maximum reduced amplitude as function of the mass ratio was generated. The model shows to be efficient in predicting the maximum amplitude of vibration in the cross-flow direction when compared to experimental data for mass ratios varying from 2.36 to 12.96 and for damping ratios from 0.002 to 0.4, predicting the reduced amplitude in both directions. The simulation results when varying the Reynolds number and the Strouhal number are in good agreement with experimental data. Moreover, the model shows to be less sensitive to variations in the damping ratio when compared to variations in the mass ratio.

References

1.
Jauvits
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,”
J. Fluid. Mech.
,
509
, pp.
23
62
.
2.
Stappenbelt
,
B.
, and
Lalji
,
F.
,
2008
, “
Vortex-Induced Vibration Super-Upper Response Branch Boundaries
,”
Int. J. Offshore Polar Eng.
,
18
(
2
), pp.
1
7
.
3.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluid. Eng.
,
131
(
10
), p.
101202
.
4.
Kang
,
Z.
,
Ni
,
W.
, and
Sun
,
L.
,
2016
, “
An Experimental Investigation of Two-Degrees-of-Freedom Viv Trajectories of a Cylinder at Different Scales and Natural Frequency Ratios
,”
Ocean. Eng.
,
126
, pp.
187
202
.
5.
Hartlen
,
R. T.
, and
Currie
,
I. G.
,
1970
, “
Lift-Oscillator Model of Vortex-Induced Vibration
,”
J. Eng. Mech. Division
,
96
, pp.
577
591
.
6.
Griffin
,
O. M.
,
Skop
,
R. A.
, and
Koopmann
,
G. H.
,
1973
, “
The Vortex-Excited Resonant Vibrations of Circular Cylinders
,”
J. Sound. Vib.
,
31
(
2
), pp.
235
249
.
7.
Landl
,
R.
,
1975
, “
A Mathematical Model for Vortex-Excited Vibrations of Bluff Bodies
,”
J. Sound. Vib.
,
42
(
2
), pp.
219
234
.
8.
Krenk
,
S.
, and
Nielsen
,
S. R. K.
,
1999
, “
Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations
,”
J. Eng. Mech.
,
125
(
3
), pp.
263
271
.
9.
Plaschko
,
P.
,
2000
, “
Global Chaos in Flow-Induced Oscillations of Cylinders
,”
J. Fluids Struct.
,
14
(
6
), pp.
883
893
.
10.
Facchinetti
,
M. L.
,
de Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.
11.
Srinil
,
N.
, and
Zanganeh
,
H.
,
2012
, “
Modelling of Coupled Cross-Flow/In-Line Vortex-Induced Vibrations Using Double Duffing and Van Der Pol Oscillators
,”
Ocean Eng.
,
53
, pp.
83
97
.
12.
Qin
,
W.
,
Bai
,
X.
, and
Bai
,
Y.
,
2019
, “
Analysis and Prediction for Structural Responses and Hydrodynamic Properties of Two-Degree-of-Freedom Vortex Induced Vibration
,”
Mech. Adv. Mater. Struc.
,
2
, pp.
1
11
.
13.
Dhanwani
,
M.
,
Sarkar
,
A.
, and
Patnaik
,
B. S. V.
,
2013
, “
Lumped Parameter Models of Vortex Induced Vibration With Application to the Design of Aquatic Energy Harvester
,”
J. Fluids Struct.
,
43
, pp.
302
324
.
14.
Farshidianfar
,
A.
, and
Zanganeh
,
H.
,
2010
, “
A Modified Wake Oscillator Model for Vortex-Induced Vibration of Circular Cylinders for a Wide Range of Mass-Damping Ratio
,”
J. Fluids Struct.
,
26
(
3
), pp.
430
441
.
15.
Srinivasan
,
S.
,
Narasimhamurthy
,
V. D.
, and
Patnaik
,
B. S. V.
,
2018
, “
Reduced Order Modeling of Two Degree-of-Freedom Vortex Induced Vibrations of a Circular Cylinder
,”
J. Wind Eng. Indus. Aerody.
,
175
, pp.
342
351
.
16.
Kurushina
,
V.
,
Pavlovskaia
,
E.
,
Postnikov
,
A.
, and
Wiercigroch
,
M.
,
2018
, “
Calibration and Comparison of Viv Wake Oscillator Models for Low Mass Ratio Structures
,”
Int. J. Mech. Sci.
,
142
.
17.
Qu
,
Y.
, and
Metrikine
,
A.
,
2020
, “
A Single Van Der Pol Wake Oscillator Model for Coupled Cross-Flow and In-Line Vortex-Induced Vibrations
,”
Ocean. Eng.
,
196
(
1
), p.
106732
.
18.
Qin
,
L.
,
2004
, “
Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders With Higher-Order Spectral Moments
,” Master’s thesis, Faculty of the Virginia Polytechnic Institute, Blacksburg, VA.
19.
Triantafyllou
,
M. S.
,
Grosenbaugh
,
M. A.
, and
Gopalkrishnan
,
R.
,
1995
, “
Vortex-Induced Vibrations in a Sheared Flow: A New Predictive Method
,”
Sixth International Conference on Flow-induced Vibrations
,
A. A. Balkema, Rotterdam
.
20.
Skop
,
R. A.
, and
Balasubramanian
,
S.
,
1997
, “
A New Twist on an Old Model for Vortex-Excited Vibrations
,”
J. Fluids Struct.
,
11
(
4
), pp.
395
412
.
21.
Blevins
,
R. D
,
2001
,
Flow-Induced Vibration
, 2nd ed.,
Krieger Publishing Company
,
Malabar, FL
.
22.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
(
7
), pp.
813
851
.
23.
Ogink
,
R. H. M.
, and
Metrikine
,
A. V.
,
2010
, “
A Wake Oscillator With Frequency Dependent Coupling for the Modeling of Vortex-Induced Vibration
,”
J. Sound. Vib.
,
329
(
26
), pp.
5452
5473
.
24.
Birkhoff
,
G.
,
1953
, “
Formation of Vortex Streets
,”
J. Appl. Phys.
,
24
(
1
), pp.
98
103
.
25.
Kurushina
,
V.
,
Pavlovskaia
,
E.
, and
Wiercigroch
,
M.
,
2020
, “
Viv of Flexible Structures in 2d Uniform Flow
,”
Int. J. Eng. Sci.
,
150
, p.
103211
.
26.
Dahl
,
J. M.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
, and
Oakley
,
O. H.
,
2010
, “
Dual Resonance in Vortex-Induced Vibrations at Subcritical and Supercritical Reynolds Numbers
,”
J. Fluid. Mech.
,
643
, pp.
395
424
.
27.
Dahl
,
J.
,
Hover
,
F.
, and
Triantafyllou
,
M.
,
2006
, “
Two-Degree-of-Freedom Vortex-Induced Vibrations Using a Force Assisted Apparatus
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
807
818
. Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-4).
28.
Stappenbelt
,
B.
,
Lalji
,
F.
, and
Tan
,
G
.
2007
, “
Low Mass Ratio Vortex-Induced Motion
,”
Proceedings of the 16th Australasian Fluid Mechanics Conference, 16AFMC
,
Crown Plaza, Gold Coast, Australia
,
Dec. 2–7
.
29.
Martins
,
F. A. C.
, and
Avila
,
J. P. J.
,
2019
, “
Effects of the Reynolds Number and Structural Damping on Vortex-Induced Vibrations of Elastically-Mounted Rigid Cylinder
,”
Int. J. Mech. Sci.
,
156
, pp.
235
249
.
30.
Martins
,
F. A. C.
, and
Avila
,
J. P. J.
,
2019
, “
Three-dimensional CFD Analysis of Damping Effects on Vortex-Induced Vibrations of 2dof Elastically-Mounted Circular Cylinders
,”
Marine Struct.
,
65
, pp.
12
31
.
31.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluid. Mech.
,
16
(
1
), pp.
195
222
.
32.
Kang
,
Z.
,
Zhang
,
C.
,
Chang
,
R.
, and
Ma
,
G.
,
2019
, “
A Numerical Investigation of the Effects of Reynolds Number on Vortex-Induced Vibration of the Cylinders With Different Mass Ratios and Frequency Ratios
,”
Int. J. Naval Architect. Ocean Eng.
,
11
(
2
), pp.
835
850
.
You do not currently have access to this content.