Abstract

An experimental setup was built to investigate the vortex-induced vibration (VIV) phenomenon on yawed and inclined flexible cylinders, in which five yaw angles θ = 0 deg, 10 deg, 20 deg, 30 deg, and 45 deg and five azimuth angles β = 0 deg, 45 deg, 90 deg, 135 deg, and 180 deg were combined. The experiments were carried out in a towing tank facility at Reynolds numbers from 1800 to 18,000, comprising vibrations up to the eighth natural mode. Time histories of displacements were recorded using a submerged optical system that tracks 17 reflective targets. A modal decomposition scheme based on Galerkin’s method was applied, aiming multimodal behavior investigations. Such an approach allowed the analysis of the modal amplitude throughout time, revealing interesting results for such a class of VIV tests. The flexible cylinder total response is generally a combination of two or more modes. Only for azimuths 0 deg, 90 deg, and 180 deg, a unimodal response was observed for the two first lock-in regimes. The frequency response showed that when the response was multimodal, non-dominant modes can follow the vibration frequency of the dominant one. Assuming a priori the independence principle (IP) valid to define the reduced velocities (Vr), it was observed that the resonance region was restricted to 3 ≤ Vr ≤ ~8 for the tested cases, indicating that the IP can be at least partially applied for flexible structures. As the literature scarcely explores the simultaneous yawed and inclined configurations, the present work may contribute to further code validation and improvements regarding the design of slender offshore structures.

References

1.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
2.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.
3.
Wang
,
J.-S.
,
Fan
,
D.
, and
Lin
,
K.
,
2020
, “
A Review on Flow-Induced Vibration of Offshore Circular Cylinders
,”
J. Hydrodyn.
,
32
(
3
), pp.
1
26
.
4.
Triantafyllou
,
M. S.
,
1984
, “
The Dynamics of Taut Inclined Cables
,”
Q. J. Mech. Appl. Math.
,
37
(
3
), pp.
421
440
.
5.
Triantafyllou
,
M. S.
, and
Grinfogel
,
L.
,
1986
, “
Natural Frequencies and Modes of Inclined Cables
,”
J. Struct. Eng.
,
112
(
1
), pp.
139
148
.
6.
Chatjigeorgiou
,
I. K.
,
2008
, “
A Finite Differences Formulation for the Linear and Nonlinear Dynamics of 2D Catenary Risers
,”
Ocean Eng.
,
35
(
7
), pp.
616
636
.
7.
Alfosail
,
F. K.
,
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2017
, “
Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers
,”
Int. J. Non-Linear Mech.
,
94
(
1
), pp.
12
19
.
8.
Franzini
,
G. R.
,
Fujarra
,
A. L. C.
,
Meneghini
,
J. R.
,
Korkischko
,
I.
, and
Franciss
,
R.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration on Rigid, Smooth and Inclined Cylinders
,”
J. Fluids Struct.
,
25
(
4
), pp.
742
750
.
9.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2013
, “
One and Two Degrees-of-Freedom Vortex-Induced Vibration Experiments With Yawed Cylinders
,”
J. Fluids Struct.
,
42
(
1
), pp.
401
420
.
10.
Jain
,
A.
, and
Modarres-Sadeghi
,
Y.
,
2013
, “
Vortex-Induced Vibrations of a Flexibly-Mounted Inclined Cylinder
,”
J. Fluids Struct.
,
43
(
1
), pp.
28
40
.
11.
Marshall
,
J. S.
,
2003
, “
Wake Dynamics of a Yawed Cylinder
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
97
103
.
12.
King
,
R.
,
1977
, “
Vortex Excited Oscillations of Yawed Circular Cylinders
,”
ASME J. Fluids Eng.
,
99
(
3
), pp.
495
501
.
13.
Ramberg
,
S. E.
,
1983
, “
The Effects of Yaw and Finite Length Upon the Vortex Wakes of Stationary and Vibrating Circular Cylinders
,”
J. Fluid Mech.
,
128
(
1
), pp.
81
107
.
14.
Lucor
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Effects of Oblique Inflow in Vortex-Induced Vibrations
,”
Flow Turbulence Combust.
,
71
(
1–4
), pp.
375
389
.
15.
Bourguet
,
R.
,
Karniadakis
,
G. E.
, and
Triantafyllou
,
M. S.
,
2015
, “
On the Validity of the Independence Principle Applied to the Vortex-Induced Vibrations of a Flexible Cylinder Inclined at 60 Deg
,”
J. Fluids Struct.
,
53
(
1
), pp.
58
69
.
16.
Matsumoto
,
M.
,
Shiraishi
,
N.
,
Kitazawa
,
M.
,
Knisely
,
C.
,
Shirato
,
H.
,
Kim
,
Y.
, and
Tsujii
,
M.
,
1990
, “
Aerodynamic Behavior of Inclined Circular Cylinders-Cable Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
63
72
.
17.
Matsumoto
,
M.
,
Daito
,
Y.
,
Kanamura
,
T.
,
Shigemura
,
Y.
,
Sakuma
,
S.
, and
Ishizaki
,
H.
,
1998
, “
Wind-Induced Vibration of Cables of Cable-Stayed Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
74
(
1
), pp.
1015
1027
.
18.
Matsumoto
,
M.
,
Shirato
,
H.
,
Yagi
,
T.
,
Goto
,
M.
,
Sakai
,
S.
, and
Ohya
,
J.
,
2003
, “
Field Observation of the Full-Scale Wind-Induced Cable Vibration
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
1
), pp.
13
26
.
19.
Chen
,
W.-L.
,
Zhang
,
Q.-Q.
,
Li
,
H.
, and
Hu
,
H.
,
2015
, “
An Experimental Investigation on Vortex Induced Vibration of a Flexible Inclined Cable Under a Shear Flow
,”
J. Fluids Struct.
,
54
(
1
), pp.
297
311
.
20.
Xu
,
W.
,
Ma
,
Y.
,
Ji
,
C.
, and
Sun
,
C.
,
2018
, “
Laboratory Measurements of Vortex-Induced Vibrations of a Yawed Flexible Cylinder at Different Yaw Angles
,”
Ocean Eng.
,
154
(
1
), pp.
27
42
.
21.
Morooka
,
C. K.
, and
Tsukada
,
R. I.
,
2013
, “
Experiments With a Steel Catenary Riser Model in a Towing Tank
,”
Appl. Ocean Res.
,
43
(
1
), pp.
244
255
.
22.
Fan
,
Y.-T.
,
Mao
,
H.-Y.
,
Guo
,
H.-Y.
,
Liu
,
Q.-H.
, and
Li
,
X.-M.
,
2015
, “
Experimental Investigation on Vortex-Induced Vibration of Steel Catenary Riser
,”
China Ocean Eng.
,
29
(
5
), pp.
691
704
.
23.
Chaplin
,
J.
, and
King
,
R.
,
2018
, “
Laboratory Measurements of the Vortex-Induced Vibrations of an Untensioned Catenary Riser With High Curvature
,”
J. Fluids Struct.
,
79
(
1
), pp.
26
38
.
24.
Yeo
,
D.-H.
, and
Jones
,
N. P.
,
2008
, “
Investigation on 3-D Characteristics of Flow Around a Yawed and Inclined Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10
), pp.
1947
1960
.
25.
Yeo
,
D.-H.
, and
Jones
,
N. P.
,
2011
, “
Computational Study on 3D Aerodynamic Characteristics of Flow Around a Yawed, Inclined, Circular Cylinder
,” Technical Report,
Newmark Structural Engineering Laboratory, University of Illinois at Urbana-Champaign
.
26.
Franzini
,
G. R.
,
Pesce
,
C. P.
,
Salles
,
R.
,
Gonçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2015
, “
Experimental Analysis of a Vertical and Flexible Cylinder in Water: Response to Top Motion Excitation and Parametric Resonance
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031010
.
27.
Franzini
,
G. R.
,
Pesce
,
C. P.
,
Goncalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2018
, “
An Experimental Investigation on Concomitant Vortex-Induced Vibration and Axial Top-Motion Excitation With a Long Flexible Cylinder in Vertical Configuration
,”
Ocean Eng.
,
156
(
1
), pp.
596
612
.
28.
Rateiro
,
F.
,
Pesce
,
C. P.
,
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Fujarra
,
A. L. C.
,
Salles
,
R.
, and
Mendes
,
P.
,
2012
, “
Risers Model Tests: Scaling Methodology and Dynamic Similarity
,”
Proceedings of 22th International Offshore and Polar Engineering Conference (ISOPE2012).
,
Rhodes, Greece
,
June
.
29.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1999
, “
Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
813
851
.
30.
Fujarra
,
A. L. C.
,
Gonçalves
,
R. T.
,
Fonseca
,
R. P.
,
Siewert
,
K.
, and
Martins
,
J. A.
,
2009
, “
Optical Motion Capture as a Technique for Measuring the Water Wave Elevation
,”
4th International Workshop on Applied Offshore Hydrodynamics (IWAOH)
,
Rio de Janeiro, Brazil
,
December
.
31.
Salles
,
R.
, and
Pesce
,
C. P.
,
2019
, “
Experimental Assessments of the Added Mass of Flexible Cylinders in Water: The Role of Modal Shape Representation
,”
Proceedings of DINAME 2017
,
São Sebastião, SP, Brazil
,
March 2017
.
32.
Orcina Ltd.
,
2020
,
OrcaFlex User Manual Version 11.0d.
,
Ulverston, UK
.
33.
Han
,
Q.
,
Ma
,
Y.
,
Xu
,
W.
,
Lu
,
Y.
, and
Cheng
,
A.
,
2017
, “
Dynamic Characteristics of an Inclined Flexible Cylinder Undergoing Vortex-Induced Vibrations
,”
J. Sound Vib.
,
394
(
1
), pp.
306
320
.
34.
Ren
,
H.
,
Zhang
,
M.
,
Wang
,
Y.
,
Xu
,
Y.
,
Fu
,
S.
,
Fu
,
X.
, and
Zhao
,
B.
,
2020
, “
Drag and Added Mass Coefficients of a Flexible Pipe Undergoing Vortex-Induced Vibration in an Oscillatory Flow
,”
Ocean Eng.
,
210
, p.
107541
.
35.
Fan
,
D.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Mapping the Properties of the Vortex-Induced Vibrations of Flexible Cylinders in Uniform Oncoming Flow
,”
J. Fluid Mech.
,
881
(
1
), pp.
815
858
.
36.
Zhang
,
H.
,
Yang
,
J.-M.
,
Xiao
,
L.-F.
, and
Lu
,
H.-N.
,
2013
, “
Hydrodynamic Performance of Flexible Risers Subject to Vortex-Induced Vibrations
,”
J. Hydrodyn.
,
25
(
1
), pp.
156
164
.
37.
Chatjigeorgiou
,
I. K.
,
2008
, “
Application of the WKB Method to Catenary-Shaped Slender Structures
,”
Math. Comput. Model.
,
48
(
1
), pp.
249
257
.
38.
Vandiver
,
J.
, and
Jong
,
J.-Y.
,
1987
, “
The Relationship Between In-line and Cross-Flow Vortex-Induced Vibration of Cylinders
,”
J. Fluids Struct.
,
1
(
4
), pp.
381
399
.
39.
Gedikli
,
E. D.
,
Chelidze
,
D.
, and
Dahl
,
J. M.
,
2018
, “
Observed Mode Shape Effects on the Vortex-Induced Vibration of Bending Dominated Flexible Cylinders Simply Supported at Both Ends
,”
J. Fluids Struct.
,
81
(
1
), pp.
399
417
.
40.
Seyed-Aghazadeh
,
B.
, and
Modarres-Sadeghi
,
Y.
,
2018
, “
An Experimental Study to Investigate the Validity of the Independence Principle for Vortex-Induced Vibration of a Flexible Cylinder Over a Range of Angles of Inclination
,”
J. Fluids Struct.
,
78
(
1
), pp.
343
355
.
41.
Gu
,
J.-J.
,
An
,
C.
,
Levi
,
C.
, and
Su
,
J.
,
2012
, “
Prediction of Vortex-Induced Vibration of Long Flexible Cylinders Modeled by a Coupled Nonlinear Oscillator: Integral Transform Solution
,”
J. Hydrodyn.
,
24
(
6
), pp.
888
898
.
You do not currently have access to this content.