Abstract

The hydrodynamics and flow around net meshes has recently drawn more and more attention because it is closely related to the expected forces on aquaculture. In terms of modeling the hydrodynamic forces on nets, Morison or screen force models are ordinarily. However, they mainly rely on empirical, experimental, or cylindrical hydrodynamic coefficients, neglecting the flow interactions between adjacent net twines. In this study, the open-source hydrodynamic toolbox reef3d is adopted to analyze the flow around net meshes and investigate the hydrodynamic drag on the structure. The simulation accuracy is in good agreement with flume experiments and previous research. The results demonstrate that 2 × 2 or 3 × 3 mesh cases are more reliable for studying the flow around net meshes including the flow interactions around adjacent twines. It is further shown that controlling the solidity of the net through changing net bar diameters has different effects on the flow around meshes than controlling it by the twine length. This article presents a first step in the aim to derive a new empirical formula for the drag coefficients depending on the solidity and fluid properties, which is more appropriate for the physics involved in offshore conditions.

References

1.
Faltinsen
,
O. M.
,
2014
, “
Hydrodynamics of Marine and Offshore Structures
,”
J. Hydrodyn.
,
26
(
6
), pp.
835
847
.
2.
Zheng
,
Z. Q.
,
Wan
,
R.
,
Chang
,
Z. Y.
,
Zhang
,
Y.
, and
Tao
,
J.
,
2019
, “
Analysis of Plane Netting With Twine Breakage in Aquaculture Net Cage
,”
J. Mar. Sci. Technol.
,
27
(
1
), pp.
72
76
.
3.
Li
,
L.
,
Jiang
,
Z.
,
Wang
,
J.
, and
Ong
,
M. C.
,
2019
, “
Numerical Study on the Heading Misalignment and Current Velocity Reduction of a Vessel-Shaped Offshore Fish Farm
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051602
.
4.
Choo
,
Y.
, and
Casarella
,
M. J.
,
1971
, “
Hydrodynamic Resistance of Towed Cables
,”
J. Hydronautics
,
5
(
4
), pp.
126
131
.
5.
Miline
,
P. H.
,
1972
,
Fish and Shellfish Farming in Coastal Waters
,
Fishing News
,
London, UK
.
6.
Løland
,
G.
,
1993
, “
Current Forces on, and Water Flow Through and Around, Floating Fish Farms
,”
Aquacult. Int.
,
1
(
1
), pp.
72
89
.
7.
Zhan
,
J. M.
,
Jia
,
X. P.
,
Li
,
Y. S.
,
Sun
,
M. G.
,
Guo
,
G. X.
, and
Hu
,
Y. Z.
,
2006
, “
Analytical and Experimental Investigation of Drag on Nets of Fish Cages
,”
Aquacult. Eng.
,
35
(
1
), pp.
91
101
.
8.
Ockendon
,
H.
, and
Ockendon
,
J. R.
,
1995
,
Viscous Flow
,
Cambridge University Press
,
Cambridge, UK
.
9.
Balash
,
C.
,
Colbourne
,
B.
,
Bose
,
N.
, and
Raman-Nair
,
W.
,
2009
, “
Aquaculture Net Drag Force and Added Mass
,”
Aquacult. Eng.
,
41
(
1
), pp.
14
21
.
10.
Hosseini
,
S. A.
,
Lee
,
C. W.
,
Kim
,
H. S.
,
Lee
,
J.
, and
Lee
,
G. H.
,
2011
, “
The Sinking Performance of the Tuna Purse Seine Gear With Large-Meshed Panels Using Numerical Method
,”
Fish. Sci.
,
77
(
4
), pp.
503
520
.
11.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2012
, “
Modelling of Current Loads on Aquaculture Net Cages
,”
J. Fluids Struct.
,
34
, pp.
218
235
.
12.
Lader
,
P.
,
Enerhaug
,
B.
,
Fredheim
,
A.
,
Klebert
,
P.
, and
Pettersen
,
B.
,
2014
, “
Forces on a Cruciform/Sphere Structure in Uniform Current
,”
Ocean Eng.
,
82
, pp.
180
190
.
13.
Zhou
,
C.
,
Xu
,
L.
,
Hu
,
F.
, and
Qu
,
X.
,
2015
, “
Hydrodynamic Characteristics of Knotless Nylon Netting Normal to Free Stream and Effect of Inclination
,”
Ocean Eng.
,
110
, pp.
89
97
.
14.
Tang
,
H.
,
Hu
,
F.
,
Xu
,
L.
,
Dong
,
S.
,
Zhou
,
C.
, and
Wang
,
X.
,
2017
, “
The Effect of Netting Solidity Ratio and Inclined Angle on the Hydrodynamic Characteristics of Knotless Polyethylene Netting
,”
J. Ocean Univ. China
,
16
(
5
), pp.
814
822
.
15.
Patursson
,
Ø
,
Swift
,
M. R.
,
Tsukrov
,
I.
,
Simonsen
,
K.
,
Baldwin
,
K.
,
Fredriksson
,
D. W.
, and
Celikkol
,
B.
,
2010
, “
Development of a Porous Media Model With Application to Flow Through and Around a Net Panel
,”
Ocean Eng.
,
37
(
2–3
), pp.
314
324
.
16.
Zhao
,
Y. P.
,
Bi
,
C. W.
,
Dong
,
G. H.
,
Gui
,
F. K.
,
Cui
,
Y.
,
Guan
,
C. T.
, and
Xu
,
T. J.
,
2013
, “
Numerical Simulation of the Flow Around Fishing Plane Nets Using the Porous Media Model
,”
Ocean Eng.
,
62
, pp.
25
37
.
17.
Bi
,
C. W.
,
Zhao
,
Y. P.
,
Dong
,
G. H.
,
Xu
,
T. J.
, and
Gui
,
F. K.
,
2014
, “
Numerical Simulation of the Interaction Between Flow and Flexible Nets
,”
J. Fluids Struct.
,
45
, pp.
180
201
.
18.
Chen
,
H.
, and
Christensen
,
E. D.
,
2017
, “
Development of a Numerical Model for Fluid-Structure Interaction Analysis of Flow Through and Around an Aquaculture Net Cage
,”
Ocean Eng.
,
142
, pp.
597
615
.
19.
Tang
,
M. F.
,
Dong
,
G. H.
,
Xu
,
T. J.
,
Bi
,
C. W.
, and
Wang
,
S.
,
2020
, “
Large-Eddy Simulations of Flow Past Cruciform Circular Cylinders in Subcritical Reynolds Numbers
,”
Ocean Eng.
,
220
, p.
108484
.
20.
Bi
,
C. W.
,
Balash
,
C.
,
Matsubara
,
S.
,
Zhao
,
Y. P.
, and
Dong
,
G. H.
,
2017
, “
Effects of Cylindrical Cruciform Patterns on Fluid Flow and Drag as Determined by CFD Models
,”
Ocean Eng.
,
135
, pp.
28
38
.
21.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
22.
Kamath
,
A.
,
Chella
,
M. A.
,
Bihs
,
H.
, and
Arntsen
,
O. A.
,
2015
, “
Evaluating Wave Forces on Groups of Three and Nine Cylinders Using a 3D Numerical Wave Tank
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
343
354
.
23.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2019
, “
Numerical Modelling of Net Motion in Waves and Current Using CFD
,”
Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Volume 6: Ocean Space Utilization
,
Glasgow, UK
,
June 9–14
, p. V006T05A001.
24.
Fredheim
,
A.
,
2005
, “
Current Force on Net Panels
,”
Ph.D. thesis
,
Norwegian University of Science and Technology
,
Trondheim
.
25.
Zou
,
B.
,
Thierry
,
N. N. B.
,
Tang
,
H.
,
Xu
,
L.
,
Zhou
,
C.
,
Wang
,
X.
,
Dong
,
S.
, and
Hu
,
F.
,
2021
, “
Flow Field and Drag Characteristics of Netting of Cruciform Structures With Various Sizes of Knot Structure Using CFD Models
,”
Appl. Ocean Res.
,
106
, p.
102466
.
26.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
Modeling and Simulation of Moored-Floating Structures Using the Tension Element Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
011803
.
27.
Osaka
,
H.
,
Nakamura
,
I.
,
Yamada
,
H.
,
Kuwata
,
Y.
, and
Kageyama
,
Y.
,
1983
, “
The Structure of a Turbulent Wake Behind a Cruciform Circular Cylinder: 1st Report, The Mean Velocity Field
,”
Bull. JSME
,
26
(
213
), pp.
356
363
.
28.
Wilcox
,
D. C.
,
1998
, “
Turbulence Modeling for CFD
,”
DCW Industries La Canada, CA
29.
Aggarwal
,
A.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Chella
,
M. A.
,
2019
, “
Characteristics of Breaking Irregular Wave Forces on a Monopile
,”
Appl. Ocean Res.
,
90
, p.
101846
.
30.
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Myrhaug
,
D.
,
2019
, “
Wave Impact Pressure and Kinematics Due to Breaking Wave Impingement on a Monopile
,”
J. Fluids Struct.
,
86
, pp.
94
123
.
31.
Aggarwal
,
A.
,
Bihs
,
H.
,
Shirinov
,
S.
, and
Myrhaug
,
D.
,
2019
, “
Estimation of Breaking Wave Properties and Their Interaction With a Jacket Structure
,”
J. Fluids Struct.
,
91
, p.
102722
.
32.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2019
, “
Numerical Modelling of the Interaction Between a Fish Net and Fluid Using CFD
,”
Proceedings of VIII International Conference on Computational Methods in Marine Engineering, MARINE 2019
,
Gothenburg, Sweden
, CIMNE, pp.
453
464
.
33.
Stringer
,
R. M.
,
Zang
,
J.
, and
Hillis
,
A. J.
,
2014
, “
Unsteady RANS Computations of Flow Around a Circular Cylinder for a Wide Range of Reynolds Numbers
,”
Ocean Eng.
,
87
, pp.
1
9
.
34.
Young
,
M. E.
, and
Ooi
,
A.
,
2007
, “
Comparative Assessment of LES and URANS for Flow Over a Cylinder at a Reynolds Number of 3900
,”
Proceedings of the 16th Australasian Fluid Mechanics Conference, 16AFMC
,
Gold Coast, Australia
,
Dec. 2–7
, pp.
1063
1070
.
35.
Zdravkovich
,
M. M.
,
1990
, “
Conceptual Overview of Laminar and Turbulent Flows Past Smooth and Rough Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
53
62
.
36.
Massey
,
B. S.
,
1975
,
Mechanics of Fluids
, 3rd ed.,
VanNostrand Company (Canada) Ltd.
,
Toronto
.
37.
Anon
,
1981
, “
Mean Forces, Pressures and Flow Field Velocities for Circular Cylindrical Structures: Single Cylinder With Two-Dimensional Flow
,”
Eng. Sci. Data Unit, Data Items
.
38.
Faltinsen
,
O. M.
,
2017
, “
Sloshing
,”
Adv. Mech.
,
47
(
1
), pp.
1
24
.
39.
Osaka
,
H.
,
Yamada
,
H.
,
Nakamura
,
I.
,
Kuwata
,
Y.
, and
Kageyama
,
Y.
,
1983
, “
The Structure of a Turbulent Wake Behind a Cruciform Circular Cylinder : 2nd Report, the Streamwise Development of Turbulent Flow Field
,”
Bull. JSME
,
26
(
214
), pp.
521
528
.
40.
Løland
,
G.
,
1991
, “
Current Forces on and Flow Through Fish Farms
,”
Ph.D. thesis
,
NTNU
,
Trondheim, Norway
.
41.
Klebert
,
P.
, and
Su
,
B.
,
2020
, “
Turbulence and Flow Field Alterations Inside a Fish Sea Cage and Its Wake
,”
Appl. Ocean Res.
,
98
, p.
102113
.
You do not currently have access to this content.