Abstract

This article presents an experimental test program and numerical analyses conducted on aluminum alloy drill pipes with two different geometries. Small-scale characterization tests were conducted to determine both the material mechanical properties and the fatigue S–N curves. Full-scale fatigue tests of the components are also presented. A finite element model of the drill pipes, including the tool-joint region, was developed. The model simulates, through different load steps, the tool-joint hot-assembly and the experimental loads to obtain the actual stress distribution during the full-scale tests. Maximum stress amplitude in the aluminum pipes was found to be coincident with the edge of the connector, at the same location where failure was observed in full-scale tests. The study revealed that such pipes present a complex stress state near their connection to the steel tool-joints due to their geometry and the residual stresses induced during the assembly of the steel connectors onto the aluminum pipes. Finally, multi-axial fatigue models were calibrated with the results of the small-scale tests and applied to the stress–strain state obtained numerically. Theoretical predictions were correlated with full-scale fatigue test results.

References

1.
Zamani
,
S. M.
,
Tabrizi
,
S. A. H.
, and
Sharifi
,
H.
,
2016
, “
Failure Analysis of Drill Pipe: A Review
,”
Eng. Failure Anal.
,
59
, pp.
605
623
.
2.
Vaisberg
,
O.
,
Vincké
,
O.
,
Perrin
,
G.
,
Sarda
,
J. P.
, and
Faÿ
,
J. B.
,
2002
, “
Fatigue of Drillstring: State of the Art
,”
Oil Gas Sci. Technol.
,
57
(
1
), pp.
7
37
.
3.
Placido
,
J. C. R.
,
Miranda
,
P. E. V.
,
Netto
,
T. A.
,
Pasqualino
,
I. P.
,
Miscow
,
G. F.
, and
Pinheiro
,
B. C.
,
2005
, “
Fatigue Analysis of Aluminum Drill Pipes
,”
Mater. Res.
,
8
(
4
),
409
415
.
4.
Lourenço
,
M. I.
,
Netto
,
T. A.
,
Silva
,
N. S.
,
Miranda
,
P. E. V.
, and
Placido
,
J. C. R.
,
2006
, “
Experimental and Numerical Evaluations of Aluminum Drill-Pipes Under Cyclic Loads
,”
Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
.
5.
International Standard, ISO 15546
,
2002
,
Petroleum and Natural Gas Industries–Aluminum Alloy Drill Pipe
.
6.
Netto
,
T. A.
,
Lourenço
,
M. I.
, and
Botto
,
A.
,
2008
, “
Fatigue Performance of pre-Strained Pipes with Girth Weld Defects: Full-Scale Experiments and Analyses
,”
Int. J. Fatigue
,
30
(
5
), pp.
767
778
.
7.
International Standard, ASTM E466-96
,
2002
,
Standard Practice For Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
.
8.
Aluminum Drill Pipes ADPPB131 × 13 and ADPPB150 × 25 for Oil&Gas Wells Drilling, Operational Manual
.
Moscow
,
AQUATIC Company
(
2002
).
9.
Hibbit, Karlsson and Sorense
.
ABAQUS Inc. User's and Theory Manual. Release 6.9.1
;
2009
.
10.
Chamat
,
A.
,
Abbadi
,
M.
,
Gilgert
,
J.
,
Cocheteux
,
F.
, and
Azari
,
Z.
,
2007
, “
A New non Local Criterion in High-Cycle Multiaxial Fatigue for non-Proportional Loadings
,”
Int. J. Fatigue
,
29
(
8
), pp.
1465
1474
.
11.
Wang
,
Y. Y.
, and
Yao
,
W. X.
,
2004
, “
Evaluation and Comparison of Several Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
,
26
(
1
), pp.
17
25
.
12.
Davoli
,
P.
,
Bernasconi
,
A.
,
Filippini
,
M.
,
Foletti
,
S.
, and
Papadopoulos
,
I. V.
,
2003
, “
Independence of the Torsional Fatigue Limit upon a Mean Shear Stress
,”
Int. J. Fatigue
,
25
(
6
), pp.
471
480
.
13.
Liu
,
Y.
, and
Mahadevan
,
S.
,
2005
, “
Multiaxial High-Cycle Fatigue Criterion and Life Prediction for Metals
,”
Int. J. Fatigue
,
27
(
7
), pp.
790
800
.
14.
Ellyin
,
F.
, and
Kujawski
,
D.
,
1993
, “A Multiaxial Fatigue Criterion Including Mean-Stress Effect,”
Advances in Multiaxial Fatigue
,
D. L.
McDowell
, and
R.
Ellis
, eds.,
ASTM International, West Conshohocken, PA
.
15.
Liu
,
K. C.
,
1993
, “A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction,”
Advances in Multiaxial Fatigue
,
D. L.
McDowell
, and
R.
Ellis
, eds.,
ASTM International, West Conshohocken, PA
.
16.
Wang
,
C. H.
, and
Brown
,
M. W.
,
1996
, “
Life Prediction Techniques For Variable Amplitude Multiaxial Fatigue -Part 1: Theories
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
367
370
.
17.
Wang
,
C. H.
, and
Brown
,
M. W.
,
1996
, “
Life Prediction Techniques For Variable Amplitude Multiaxial Fatigue -Part 2: Comparison with Experimental Results
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
371
374
.
18.
Cristofori
,
A.
,
Susmel
,
L.
, and
Tovo
,
R.
,
2008
, “
A Stress Invariant Based Criterion To Estimate Fatigue Damage Under Multiaxial Loading
,”
Int. J. Fatigue
,
30
(
9
), pp.
1646
1658
.
19.
Wang
,
Y. Y.
, and
Yao
,
W. X.
,
2006
, “
A Multiaxial Fatigue Criterion for Various Metallic Materials Under Proportional and non Proportional Loading
,”
Int. J. Fatigue
,
28
(
4
), pp.
401
408
.
20.
Karolczuk
,
A.
, and
Macha
,
E.
,
2005
, “
A Review of Critical Plane Orientation in Multiaxial Fatigue Failure Criteria of Metallic Materials
,”
Int. J. Fract.
,
134
(
3–4
), pp.
267
304
.
21.
Karolczuk
,
A.
,
2008
, “
Non-Local Area Approach To Fatigue Life Evaluation Under Combined Reversed Bending and Torsion
,”
Int. J. Fatigue
,
30
(
10–11
), pp.
1985
1996
.
22.
Lee
,
Y. L.
,
Tjhung
,
T.
, and
Jordan
,
A.
,
2007
, “
A Life Prediction Model For Welded Joints Under Multiaxial Variable Amplitude Loading Histories
,”
Int. J. Fatigue
,
29
(
6
), pp.
1162
1173
.
23.
Papadopoulos
,
I. V.
,
2001
, “
Long Life Fatigue Under Multiaxial Loading
,”
Int. J. Fatigue
,
23
(
10
), pp.
839
849
.
24.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
,
1997
, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria For Metal
,”
Int. J. Fatigue
,
19
(
3
), pp.
219
235
.
25.
Findley
,
W. N.
,
1959
, “
A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Loadings for Bending
,”
ASME J. Eng. Ind.
,
81
(
4
), pp.
301
306
.
26.
McDiarmid
,
D. L.
,
1994
, “
A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue Failure for Design and Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
12
), pp.
1475
1484
.
27.
You
,
B.
, and
Lee
,
S.
,
1996
, “
A Critical Review on Multiaxial Fatigue Assessments of Metals
,”
Int. J. Fatigue
,
18
(
4
), pp.
235
244
.
28.
Tipton
,
S. M.
, and
Nelson
,
D. V.
,
1997
, “
Advances in Multiaxial Fatigue Life Prediction for Components with Stress Concentrations
,”
Int. J. Fatigue
,
19
(
6
), pp.
503
515
.
29.
Sines
,
G.
, and
Ohgi
,
G.
,
1981
, “
Fatigue Criteria Under Combined Stresses and Strains
,”
ASME J. Eng. Mater. Technol.
,
103
(
2
), pp.
82
90
.
30.
Robert
,
J. L.
,
1994
, “Fatigue Life Prediction Under Periodical or Random Multiaxial Stress States,”
Automation in Fatigue and Fracture: Testing and Analysis
,
1231
,
ASTM STP
, pp.
369
387
.
31.
Morel
,
F.
,
2000
, “
A Critical Plane Approach for Life Prediction of High Cycle Fatigue Under Multiaxial Variable Amplitude Loading
,”
Int. J. Fatigue
,
22
(
2
), pp.
101
119
.
You do not currently have access to this content.