Abstract
The mechanical properties of welded DH36 steel at low temperatures are important to the safety of structures in Polar areas. The purpose of the study is to investigate the static and cyclic behavior of welded DH36 steel at low temperatures based on tensile and fatigue tests. The ductile to brittle transition and fatigue ductile to brittle transition of welded DH36 steel occurred at low temperatures. Finally, some relevant applications of the results within the context of polar engineering and design are discussed in the last part of the present study.
References
1.
Suyuthi
, A.
, Leira
, B. J.
, and Riska
, K.
, 2013
, “Fatigue Damage of Ship Hulls Due to Local Ice-Induced Stresses
,” Appl. Ocean Res.
, 42
, pp. 87
–104
. 2.
Zhao
, W.
, Cao
, J.
, Feng
, G.
, and Ren
, H.
, 2018
, “Investigation on Temperature Dependence of Yielding Strength for Marine DH36 Steel
,” Shipbuilding China
, 59
(3
), pp. 108
–115
.3.
Yan
, J.-B.
, Liew
, J. Y. R.
, Zhang
, M.-H.
, and Wang
, J.-Y.
, 2014
, “Mechanical Properties of Normal Strength Mild Steel and High Strength Steel S690 in Low Temperature Relevant to Arctic Environment
,” Mater. Des.
, 61
, pp. 150
–159
. 4.
Kumar
, S.
, and Ghosh
, P. K.
, 2018
, “TIG Arc Processing Improves Tensile and Fatigue Properties of Surface Modified of AISI 4340 Steel
,” Int. J. Fatigue
, 116
, pp. 306
–316
. 5.
Wang
, X.
, Zhang
, W.
, Ni
, J.
, Zhang
, T.
, Gong
, J.
, and Wahab
, M. A.
, 2019
, “Quantitative Description Between Pre-Fatigue Damage and Residual Tensile Properties of P92 Steel
,” Mater. Sci. Eng.: A
, 744
, pp. 415
–425
. 6.
Polezhayeva
, H.
, Toumpis
, A. I.
, Galloway
, A. M.
, Molter
, L.
, Ahmad
, B.
, and Fitzpatrick
, M. E.
, 2015
, “Fatigue Performance of Friction Stir Welded Marine Grade Steel
,” Int. J. Fatigue
, 81
, pp. 162
–170
. 7.
Darcis
, P. P.
, Katsumoto
, H.
, Payares-Asprino
, M. C.
, Liu
, S.
, and Siewert
, T. A.
, 2010
, “Cruciform Fillet Welded Joint Fatigue Strength Improvements by Weld Metal Phase Transformations
,” Fatigue Fract. Eng. Mater. Struct.
, 31
(2
), pp. 125
–136
. 8.
Kim
, K. J.
, Lee
, J. H.
, Park
, D. K.
, Jung
, B. G.
, Han
, X.
, and Paik
, J. K.
, 2016
, “An Experimental and Numerical Study on Nonlinear Impact Responses of Steel-Plated Structures in an Arctic Environment
,” Int. J. Impact Eng.
, 93
, pp. 99
–115
. 9.
Kang
, K.
, Goo
, B.
, Kim
, J.
, Kim
, D.
, and Kim
, J.
, 2009
, “Experimental Investigation on Static and Fatigue Behavior of Welded sm490a Steel Under Low Temperature
,” Int. J. Steel Struct.
, 9
(1
), pp. 85
–91
. 10.
Xie
, J.
, Zhao
, X.
, and Yan
, J.-B.
, 2018
, “Mechanical Properties of High Strength Steel Strand at Low Temperatures: Tests and Analysis
,” Constr. Build. Mater.
, 189
, pp. 1076
–1092
. 11.
Fricke
, W.
, von Lilienfeld-Toal
, A.
, and Paetzold
, H.
, 2012
, “Fatigue Strength Investigations of Welded Details of Stiffened Plate Structures in Steel Ships
,” Int. J. Fatigue
, 34
(1
), pp. 17
–26
. 12.
Bertini
, L.
, Frendo
, F.
, and Marulo
, G.
, 2018
, “Fatigue Life Assessment of Welded Joints by Two Local Stress Approaches: The Notch Stress Approach and the Peak Stress Method
,” Int. J. Fatigue
, 110
, pp. 246
–253
. 13.
ASTM E8/E8M-21
, 2021
, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, p. 27
.14.
Min
, D.
, Shim
, C.
, Shin
, D.
, and Cho
, S.
, 2011
, “On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels
,” J. Soc. Naval Architects Korea
, 48
(2
), pp. 171
–177
. 15.
Edagawa
, K.
, Kamimura
, Y.
, Iskandarov
, A. M.
, Umeno
, Y.
, and Takeuchi
, S.
, 2019
, “Peierls Stresses Estimated by a Discretized Peierls–Nabarro Model for a Variety of Crystals
,” Materialia
, 5
, p. 100218
. 16.
Li
, Y.
, Ren
, X.
, He
, J.
, and Zhang
, Z.
, 2018
, “Constraint Effect on the Brittle-to-Ductile Transition of Single-Crystal Iron Induced by Dislocation Mobility
,” Int. J. Mech. Sci.
, 149
, pp. 212
–223
. 17.
Chen
, F.
, 2014
, “Development and Production of DH36 Jacket Platform Steel Plate
,” Shandong Metall.
, 38
, pp. 7
–9
.18.
ASTM E466-21
, 2021
, “Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM International, West Conshohocken, PA.19.
Matsuno
, M.
, Adachi
, S.
, Nakayama
, M.
, and Watanabe
, K.
, “A Temperature-Compensated Bridge Circuit
,” Proceedings of 1993 IEEE Instrumentation and Measurement Technology Conference
, pp. 737
–740
.20.
ISO
, 2012
, Metallic Materials—Fatigue Testing—Statistical Planning and Analysis of Data
, International Organization for Standardization
, Vernier, Geneva, Switzerland
.21.
Wang
, Y.
, Liu
, J.
, Hu
, J.
, Garbatov
, Y.
, and Guedes Soares
, C.
, 2020
, “Fatigue Strength of EH36 Steel Welded Joints and Base Material at Low-Temperature
,” Int. J. Fatigue
, 142
, p. 105896
. 22.
Fan
, J. L.
, Guo
, X. L.
, Wu
, C. W.
, and Zhao
, Y. G.
, 2011
, “Research on Fatigue Behavior Evaluation and Fatigue Fracture Mechanisms of Cruciform Welded Joints
,” Mater. Sci. Eng.: A
, 528
(29–30
), pp. 8417
–8427
. 23.
Xu
, W.
, Westerbaan
, D.
, Nayak
, S. S.
, Chen
, D. L.
, Goodwin
, F.
, Biro
, E.
, and Zhou
, Y.
, 2012
, “Microstructure and Fatigue Performance of Single and Multiple Linear Fiber Laser Welded DP980 Dual-Phase Steel
,” Mater. Sci. Eng.: A
, 553
, pp. 51
–58
. 24.
Mcevily
, A. J.
, and Matsunaga
, H.
, 2010
, “On Fatigue Striatums
,” Sci. Iranica
, 17
(1
), pp. 75
–82
.25.
Li
, S.
, Kang
, Y.
, Zhu
, G.
, and Kuang
, S.
, 2015
, “Microstructure and Fatigue Crack Growth Behavior in Tungsten Inert Gas Welded DP780 Dual-Phase Steel
,” Mater. Des.
, 85
, pp. 180
–189
. 26.
Walters
, C. L.
, Alvaro
, A.
, and Maljaars
, J.
, 2016
, “The Effect of Low Temperatures on the Fatigue Crack Growth of S460 Structural Steel
,” Int. J. Fatigue
, 82
, pp. 110
–118
. 27.
Laird
, C.
, and Krause
, A. R.
, 1968
, “A Theory of Crack Nucleation in High Strain Fatigue
,” Int. J. Fract.
, 4
(3
), pp. 219
–231
. 28.
Lu
, B.
, and Zheng
, X.
, 1992
, “Predicting Fatigue Crack Initiation Life of an Aluminium Alloy at Low Temperatures
,” Fatigue Fract. Eng. Mater. Struct.
, 15
(12
), pp. 1213
–1221
. 29.
DNV
, 2008
, “Rules for Classification of Ships—Part 3—Chapter 3: Newbuildings—Hull and Equipment—Main Class—Hull Equipment and Safety,” 5, Det Norske Veritas, Norway.30.
ABS
, 2015
, Guide for Vessels Operating in Low Temperature Environments
, American Bureau of Shipping
, The State of New York
.31.
BSI
, 2015
, “Guide to Fatigue Design and Assessment of Steel Products,” BSI Standards, London.32.
Lieberman
, G. J.
, 1957
, Tables for One-Sided Statistical Tolerance Limits
, Stanford University
, Stanford, CA
.Copyright © 2021 by ASME
You do not currently have access to this content.