Abstract

This paper addresses the applicability of liquid–liquid extraction for separating mineral particles by the difference in oil–water partition coefficient, for the seafloor mineral processing of seafloor massive sulfides (SMSs). Measurements of contact angle of sulfide mineral–aqueous solution–oil systems under high-pressure conditions were performed to evaluate the efficiency of liquid–liquid extraction at high pressures. The results showed that the contact angle stayed around 80–100 deg at the pressure range up to 16 MPa, and the changes in the contact angles were within 5 deg with varying pressure. Extraction experiments were carried out by using particles of an SMS ore, which contained Zinc (Zn), Lead (Pb), and Barium (Ba) in the grade of more than 10 mass% and Copper (Cu) in a small percentage, to evaluate the beneficiation performance of liquid–liquid extraction. In the experiments, extraction conditions such as the dosage of chemical reagents and pH in the aqueous solution were varied to optimize both the recovery and selectivity of Cu, Zn, and Pb in the oil phase and those of Ba in the water phase. The experimental results showed that the optimum condition was 200 g/t dosage—pH 7, where the grade and recovery were ca. 37 mass% and ca. 90 mass%, respectively. The beneficiation performance of liquid–liquid extraction would be comparable with that of flotation, adapted to the processing of other SMS ores.

References

1.
Rona
,
P. A.
, and
Scott
,
S. D.
,
1993
, “
A Special Issue on Sea-Floor Hydrothermal Mineralization; New Perspectives; Preface
,”
Econ. Geol.
,
88
(
8
), pp.
1935
1976
.
2.
Glasby
,
G. P.
,
Iizasa
,
K.
,
Yuasa
,
M.
, and
Usui
,
A.
,
2000
, “
Submarine Hydrothermal Mineralization on the Izu-Bonin Arc, South of Japan: An Overview
,”
Mar. Georesources Geotechnol.
,
18
(
2
), pp.
141
176
.
3.
Marumo
,
K.
,
Urabe
,
T.
,
Goto
,
A.
,
Takano
,
Y.
, and
Nakaseama
,
M.
,
2008
, “
Mineralogy and Isotope Geochemistry of Active Submarine Hydrothermal Field at Suiyo Seamount, Izu-Bonin Arc, West Pacific Ocean
,”
Resour. Geol.
,
58
(
3
), pp.
220
248
.
4.
Stoffers
,
P.
,
Worthington
,
T. J.
,
Schwarz-Schampera
,
U.
,
Hannington
,
M. D.
,
Massoth
,
G. J.
,
Hekinian
,
R.
,
Schmidt
,
M.
,
Lundsten
,
L. J.
,
Evans
,
L. J.
,
Vaiomo'unga
,
R.
, and
Kerby
,
T.
,
2006
, “
Submarine Volcanoes and High-Temperature Hydrothermal Venting on the Tonga Arc, Southwest Pacific
,”
Geology
,
34
(
6
), pp.
453
456
.
5.
Wright
,
I. C.
,
de Ronde
,
C. E. J.
,
Faure
,
K.
, and
Gamble
,
J. A.
,
1998
, “
Discovery of Hydrothermal Sulfide Mineralization From Southern Kermadec Arc Volcanoes (SW Pacific)
,”
Earth Planet. Sci. Lett.
,
164
(
1–2
), pp.
335
343
.
6.
Halbach
,
P.
,
Pracejus
,
B.
, and
Maerten
,
A.
,
1993
, “
Geology and Mineralogy of Massive Sulfide Ores From the Central Okinawa Trough, Japan
,”
Econ. Geol.
,
88
(
8
), pp.
2210
2225
.
7.
Binns
,
R. A.
, and
Scott
,
S. D.
,
1993
, “
Actively Forming Polymetallic Sulfide Deposits Associated With Felsic Volcanic Rocks in the Eastern Manus Back-Arc Basin, Papua New Guinea
,”
Econ. Geol.
,
88
(
8
), pp.
2226
2236
.
8.
Petersen
,
S.
,
Herzig
,
P. M.
,
Kuhn
,
T.
,
Franz
,
L.
,
Hannington
,
M. D.
,
Monecke
,
T.
, and
Gemmell
,
J. B.
,
2005
, “
Shallow Drilling of Seafloor Hydrothermal Systems Using the BGS Rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea
,”
Mar. Georesources Geotechnol.
,
23
(
3
), pp.
175
193
.
9.
Herzig
,
P. M.
,
Hannington
,
M. D.
,
Fouquet
,
Y.
,
von Stackelberg
,
U.
, and
Petersen
,
S.
,
1993
, “
Gold-Rich Polymetallic Sulfides From the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific
,”
Econ. Geol.
,
88
(
8
), pp.
2182
2209
.
10.
Hoagland
,
P.
,
Beaulieu
,
S.
,
Tivey
,
M. A.
,
Eggert
,
R. G.
,
German
,
C.
,
Glowka
,
L.
, and
Lin
,
J.
,
2010
, “
Deep-Sea Mining of Seafloor Massive Sulfides
,”
Mar. Policy
,
34
(
3
), pp.
728
732
.
11.
Hannington
,
M.
,
Jamieson
,
J.
,
Monecke
,
T.
,
Petersen
,
S.
, and
Beaulieu
,
S.
,
2011
, “
The Abundance of Seafloor Massive Sulfide Deposits
,”
Geology
,
39
(
12
), pp.
1155
1158
.
12.
Boschen
,
R. E.
,
Rowden
,
A. A.
,
Clark
,
M. R.
, and
Gardner
,
J. P. A.
,
2013
, “
Mining of Deep-Sea Seafloor Massive Sulfides: A Review of the Deposits, Their Benthic Communities, Impacts From Mining, Regulatory Frameworks and Management Strategies
,”
Ocean Coast. Manag.
,
84
, pp.
54
67
.
13.
Monecke
,
T.
,
Petersen
,
S.
, and
Hannington
,
M. D.
,
2014
, “
Constraints on Water Depth of Massive Sulfide Formation: Evidence From Modern Seafloor Hydrothermal Systems in Arc-Related Settings
,”
Econ. Geol.
,
109
(
8
), pp.
2079
2101
.
14.
Boschen
,
R. E.
,
Collins
,
P. C.
,
Tunnicliffe
,
V.
,
Carlsson
,
J.
,
Gardner
,
J. P. A.
,
Lowe
,
J.
,
McCrone
,
A.
,
Metaxas
,
A.
,
Sinniger
,
F.
, and
Swaddling
,
A.
,
2016
, “
A Primer for Use of Genetic Tools in Selecting and Testing the Suitability of Set-Aside Sites Protected From Deep-Sea Seafloor Massive Mining Activities
,”
Ocean Coast. Manag.
,
122
, pp.
37
48
.
15.
Petersen
,
S.
,
Krätschell
,
A.
,
Augustin
,
N.
,
Jamieson
,
J.
,
Hein
,
J. R.
, and
Hannington
,
M. D.
,
2016
, “
News From the Seabed—Geological Characteristics and Resource Potential of Deep-Sea Mineral Resources
,”
Mar. Policy
,
70
, pp.
175
187
.
16.
Kowalczuk
,
P. B.
,
Snook
,
B.
,
Kleiv
,
R. A.
, and
Aasly
,
K.
,
2018
, “
Efficient Extraction of Copper and Zinc From Seafloor Massive Sulphide Rock Samples From the Loki's Castle Area at the Arctic Mid-ocean Ridge
,”
Miner. Eng.
,
115
, pp.
106
116
.
17.
Durden
,
J. M.
,
Lallier
,
L. E.
,
Murphy
,
K.
,
Jaeckel
,
A.
,
Gjerde
,
K.
, and
Jones
,
D. O. B.
,
2018
, “
Environmental Impact Assessment Process for Deep-Sea Mining in ‘the Area’
,”
Mar. Policy
,
87
, pp.
194
202
.
18.
Lusty
,
P. A. J.
, and
Murton
,
B. J.
,
2018
, “
Deep-Ocean Mineral Deposits: Metal Resources and Windows Into Earth Process
,”
Elements
,
14
(
5
), pp.
301
306
.
19.
Washburn
,
T. W.
,
Turner
,
P. J.
,
Durden
,
J. M.
,
Jones
,
D. O. B.
,
Weaver
,
P.
, and
Van Dover
,
C. L.
,
2019
, “
Ecological Risk Assessment for Deep-Sea Mining
,”
Ocean Coast. Manag.
,
176
, pp.
24
39
.
20.
Anderson
,
M. O.
,
Hannington
,
M. D.
,
McConachy
,
T. F.
,
Jamieson
,
J. W.
,
Anders
,
M.
,
Wienkenjohann
,
H.
,
Strauss
,
H.
,
Hansteen
,
T.
, and
Petersen
,
S.
,
2019
, “
Mineralization and Alteration of a Modern Seafloor Massive Sulfide Deposit Hosted in Mafic Volcaniclastic Rocks
,”
Econ. Geol.
,
114
(
5
), pp.
857
896
.
21.
Ueda
,
S.
, and
Okamoto
,
N.
,
2015
, “
The Overview of Project for Developing Seafloor Massive Sulfides in the EEZ of Japan
,”
J. MMIJ
,
131
(
12
), pp.
610
613
. (in Japanese).
22.
Yamaji
,
N.
,
Okamoto
,
N.
,
Shiokawa
,
S.
,
Kawano
,
S.
, and
Sakurai
,
H.
,
2019
, “
Achievement for Pilot Test of Excavating and Ore Lifting Conducted for Seafloor Polymetallic Sulphides—World's First Success in Continuous Ore Lifting Test for Seafloor Polymetallic Sulphides -
,”
J. MMIJ
,
135
(
6
), pp.
42
51
. (in Japanese).
23.
Calvo
,
G.
,
Mudd
,
G.
,
Valero
,
A.
, and
Valero
,
A.
,
2016
, “
Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?
,”
Resources
,
5
(
4
), p.
36
.
24.
Smith
,
G.
,
2010
, “
Deepwater Seafloor Resource Production—Development of the World's Next Offshore Frontier
,”
Proceedings of the ASME 2010 29th International Conference on Ocean
,
Offshore and Arctic Engineering
,
Shanghai, China
,
June 6-11, 2010
, ASME Paper No. OMAE2010-20350.
25.
Nakajima
,
Y.
,
Uto
,
S.
,
Kanada
,
S.
,
Yamamoto
,
J.
,
Takahashi
,
I.
,
Otabe
,
S.
,
Sadaki
,
J.
,
Okaya
,
K.
,
Matsuo
,
S.
, and
Fujita
,
T.
,
2011
, “
Concept of Seafloor Mineral Processing for Development of Seafloor Massive Sulfides
,”
Proceedings of the ASME 2011 30th International Conference on Ocean
,
Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
June 19–24, 2011
, ASME Paper No. OMAE2011-49981.
26.
Nakajima
,
Y.
,
Yamamoto
,
J.
,
Kanada
,
S.
,
Masanobu
,
S.
,
Takahashi
,
I.
,
Sadaki
,
J.
,
Abe
,
R.
,
Okaya
,
K.
,
Matsuo
,
S.
, and
Fujita
,
T.
,
2012
, “
Study on Seafloor Mineral Processing for Mining of Seafloor Massive Sulfides
,”
Proceedings of the ASME 2012 31st International Conference on Ocean
,
Offshore and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1-6, 2012
, ASME Paper No. OMAE2012-83354.
27.
Finch
,
J. A.
,
1995
, “
Column Flotation: A Selected Review—Part IV: Novel Flotation Devices
,”
Miner. Eng.
,
8
(
6
), pp.
587
602
.
28.
Wen
,
W. W.
, and
Sun
,
S. C.
,
1981
, “
An Electrokinetic Study on the Oil Flotation of Oxidized Coal
,”
Sep. Sci. Technol.
,
16
(
10
), pp.
1491
1521
.
29.
Kusaka
,
E.
,
Tamai
,
H.
,
Nakahiro
,
Y.
, and
Wakamatsu
,
T.
,
1993
, “
Role of Surface Free Energy in a Solid Surface During Collectorless Liquid—Liquid Extraction
,”
Miner. Eng.
,
6
(
5
), pp.
455
464
.
30.
Kusaka
,
E.
,
Nakahiro
,
Y.
, and
Wakamatsu
,
T.
,
1994
, “
The Role of Zeta Potentials of Oil Droplets and Quartz Particles During Collectorless Liquid—Liquid Extraction
,”
Int. J. Miner. Process.
,
41
(
3–4
), pp.
257
269
.
31.
Chen
,
R.
,
Ata
,
M. S.
,
Zhao
,
X.
,
Clifford
,
A.
,
Puri
,
I.
, and
Zhitomirsky
,
I.
,
2017
, “
Strategies for Liquid—Liquid Extraction of Oxide Particles for Applications in Supercapacitor Electrodes and Thin Films
,”
J. Colloid Interface Sci.
,
499
, pp.
1
8
.
32.
Otsuki
,
A.
,
Dodbiba
,
G.
, and
Fujita
,
T.
,
2018
, “
Two-Liquid Flotation for Separating Mixtures of Ultra-Fine Rare Earth Fluorescent Powders for Material Recycling—A Review
,”
Colloids Interfaces
,
2
(
1
), p.
7
.
33.
Hidayah
,
N. N.
, and
Abidin
,
S. Z.
,
2018
, “
The Evolution of Mineral Processing in Extraction of Rare Earth Elements Using Liquid-Liquid Extraction: A Review
,”
Miner. Eng.
,
121
, pp.
146
157
.
34.
Jung
,
Y. C.
, and
Bhushan
,
B.
,
2009
, “
Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/Philicity and Oleophobicity/Philicity
,”
Langmuir
,
25
(
24
), pp.
14165
14173
.
35.
Reynolds
,
P.
,
2010
, “Wetting of Surfaces,”
Colloid Science: Principles, Methods and Applications
, 2nd ed.,
T.
Cosgrove
, ed.,
John Wiley and Sons
,
Chichester, United Kingdom
, pp.
197
217
.
36.
Hebach
,
A.
,
Oberhof
,
A.
,
Dahmen
,
N.
,
Kögel
,
A.
,
Ederer
,
H.
, and
Dinjus
,
E.
,
2002
, “
Interfacial Tension at Elevated Pressures-Measurements and Correlation in the Water + Carbon Dioxide System
,”
J. Chem. Eng. Data
,
47
(
6
), pp.
1540
1546
.
37.
Chiquet
,
P.
,
Broseta
,
D.
, and
Thibeau
,
S.
,
2007
, “
Wettability Alteration of Caprock Minerals by Carbon Dioxide
,”
Geofluids
,
7
(
2
), pp.
112
122
.
38.
Bharatwaj
,
B.
,
Wu
,
L.
, and
da Rocha
,
S. R. P.
,
2007
, “
Biocompatible, Lactide-Based Surfactants for the CO2-Water Interface: High-Pressure Contact Angle Goniometry, Tensiometry, and Emulsion Formation
,”
Langmuir
,
23
(
24
), pp.
12071
12078
.
39.
Espinoza
,
D. N.
, and
Santamarina
,
J. C.
,
2010
, “
Water-CO2-Mineral Systems: Interfacial Tension, Contact Angle, and Diffusion—Implications to CO2 Geological Storage
,”
Water Resour. Res.
,
46
(
7
), p.
W0753
.
40.
Georgiadis
,
A.
,
Maitland
,
G.
,
Trusler
,
J. P. M.
, and
Bismarck
,
A.
,
2010
, “
Interfacial Tension Measurements of the (H2O + CO2) System at Elevated Pressures and Temperatures
,”
J. Chem. Eng. Data
,
55
(
10
), pp.
4168
4175
.
41.
Bikkina
,
P. K.
,
2011
, “
Contact Angle Measurements of CO2-Water-Quartz/Calcite Systems in the Perspective of Carbon Sequestration
,”
Int. J. Greenhouse Gas Control
,
5
(
5
), pp.
1259
1271
.
42.
Kaveh
,
N. S.
,
Rudolph
,
E. S. J.
,
Wolf
,
K.-H. A. A.
, and
Ashrafizadeh
,
S. N.
,
2011
, “
Wettability Determination by Contact Angle Measurements: HvbB Coal-Water System With Injection of Synthetic Flue Gas and CO2
,”
J. Colloid Interface Sci.
,
364
(
1
), pp.
237
247
.
43.
Bıçak
,
Ö.
,
Ekmekçi
,
Z.
,
Can
,
M.
, and
Öztürk
,
Y.
,
2012
, “
The Effect of Water Chemistry on Froth Stability and Surface Chemistry of the Flotation of a Cu-Zn Sulfide Ore
,”
Int. J. Miner. Process.
,
102–103
, pp.
32
37
.
44.
Iglauer
,
S.
,
Mathew
,
M. S.
, and
Bresme
,
F.
,
2012
, “
Molecular Dynamics Computations of Brine-CO2 Interfacial Tensions and Brine-CO2-Quartz Contact Angles and Their Effects on Structural and Residual Trapping Mechanisms in Carbon Geo-sequestration
,”
J. Colloid Interface Sci.
,
386
(
1
), pp.
405
414
.
45.
Wang
,
B.
, and
Peng
,
Y.
,
2014
, “
The Effect of Saline Water on Mineral Flotation—A Critical Review
,”
Miner. Eng.
,
66–68
, pp.
13
24
.
46.
Pereira
,
L. M. C.
,
Chapoy
,
A.
,
Burgass
,
R.
,
Oliveira
,
M. B.
,
Coutinho
,
J. A. P.
, and
Tohidi
,
B.
,
2016
, “
Study of the Impact of High Temperatures and Pressures on the Equilibrium Densities and Interfacial Tension of the Carbon Dioxide/Water System
,”
J. Chem. Thermodyn.
,
93
, pp.
404
415
.
47.
Al-Yaseri
,
A. Z.
,
Lebedev
,
M.
,
Barifcani
,
A.
, and
Iglauer
,
S.
,
2016
, “
Receding and Advancing (CO2 + Brine + Quartz) Contact Angles as a Function of Pressure, Temperature, Surface Roughness, Salt Type and Salinity
,”
J. Chem. Thermodyn.
,
93
, pp.
416
423
.
48.
Nakajima
,
Y.
,
Yamamoto
,
J.
,
Takahashi
,
T.
,
Thornton
,
B.
,
Yamabe
,
Y.
,
Dodbiba
,
G.
, and
Fujita
,
T.
,
2019
, “
Development of Elemental Technologies for Seafloor Mineral Processing of Seafloor Massive Sulfides
,”
Proceedings of the ASME 2019 38th International Conference on Ocean
,
Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
,
June 9-14, 2019
, ASME Paper No. OMAE2019-96040.
49.
Stutzman
,
P. E.
, and
Clifton
,
J. R.
,
1999
, “
Specimen Preparation for Scanning Electron Microscopy
,”
Proceedings of the Twenty-First International Conference on Cement Microscopy
,
Las Vegas, NV
,
Apr. 25-29, 1999
, pp.
10
22
.
50.
Kjellsen
,
K. O.
,
Monsøy
,
A.
,
Isachsen
,
K.
, and
Detwiler
,
R. J.
,
2003
, “
Preparation of Flat-Polished Specimens for SEM-Backscattered Electron Imaging and X-ray Microanalysis—Importance of Epoxy Impregnation
,”
Cem. Concr. Res.
,
33
(
4
), pp.
611
616
.
51.
Japan Agency for Marine-Earth Science and Technology
,
2016
, “
Data and Sample Research System for Whole Cruise Information in JAMSTEC
,” http://www.godac.jamstec.go.jp/darwin/e, Accessed November 20, 2020.
52.
Oki
,
T.
,
Nishisu
,
Y.
, and
Hoshino
,
M.
,
2015
, “
Characterization of the Existing Mineral Phases of Japanese Submarine Hydrothermal Polymetallic Sulfides and Their Influence on Respective Mineral Processing Properties
,”
J. MMIJ
,
131
(
12
), pp.
619
626
. (in Japanese).
53.
Japan Oil, Gas and Metals National Corporation
, last modified February 27, 2019, http://www.jogmec.go.jp/news/release/news_10_000279.html, Accessed November 20, 2020.
54.
Otsuki
,
A.
,
Gonçalves
,
P. P.
, and
Leroy
,
E.
,
2019
, “
Selective Milling and Elemental Assay of Printed Circuit Board Particles for Their Recycling Purpose
,”
Metals
,
9
(
8
), p.
899
.
You do not currently have access to this content.