Abstract

The survivability, safe operation, and design of marine vehicles and wave energy converters are highly dependent on accurate characterization and estimation of the energy content of the ocean wave field. In this study, analytical solutions of the nonlinear Schrödinger equation (NLS) using periodic inverse scattering transformation (IST) and its associated Riemann spectrum are used to obtain the nonlinear wave modes (eigen functions of the nonlinear equation consisting of multiple phase-locked harmonic components). These nonlinear wave modes are used in two approaches to develop a more accurate definition of the energy content. First, in an ad hoc approach, the amplitudes of the nonlinear wave modes are used with a linear energy calculation resulting in a semi-linear energy estimate. Next, a novel, mathematically exact definition of the energy content taking into account the nonlinear effects up to fifth order is introduced in combination with the nonlinear wave modes, the exact energy content of the wave field is computed. Experimental results and numerical simulations were used to compute and analyze the linear, ad hoc, and exact energy contents of the wave field, using both linear and nonlinear spectra. The ratio of the ad hoc and exact energy estimates to the linear energy content was computed to examine the effect of nonlinearity on the energy content. In general, an increasing energy ratio was observed for increasing nonlinearity of the wave field, with larger contributions from higher-order harmonic terms. It was confirmed that the significant increase in nonlinear energy content with respect to its linear counterpart is due to the increase in the number of nonlinear phase-locked (bound wave) modes.2

References

1.
Coe
,
R. G.
, and
Neary
,
V. S.
,
2014
, “
Review of Methods for Modeling Wave Energy Converter Survival in Extreme Sea States
,”
Proceedings of the 2nd Marine Energy Technology Symposium
,
Seattle, WA
,
Apr. 15–18
.
2.
Yim
,
S. C.
,
Osborne
,
A. R.
, and
Mohtat
,
A.
,
2017
, “
Nonlinear Ocean Wave Models and Laboratory Simulation of High Seastates and Rogue Waves
,”
ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
.
3.
Osborne
,
A.
,
2010
,
Nonlinear Ocean Waves and the Inverse Scattering Transform
,
Academic Press
,
Cambridge, MA
.
4.
Benjamin
,
T. B.
, and
Feir
,
J.
,
1967
, “
The Disintegration of Wave Trains on Deep Water Part 1. Theory
,”
J. Fluid Mech.
,
27
(
3
), pp.
417
430
.
5.
Airy
,
G.
,
1842
,
On Tides and Waves: Encyclopedia Metropolitana
,
Encyclopedia Britannica
,
London
.
6.
Cavaleri
,
L.
,
Alves
,
J.-H. G. M.
,
Ardhuin
,
F.
,
Babanin
,
A.
,
Banner
,
M.
,
Belibassakis
,
K.
,
Benoit
,
M.
,
Donelan
,
M.
,
Groeneweg
,
J.
,
Herbers
,
T. H. C.
,
Hwang
,
P.
,
Janssen
,
P. A. E. M.
,
Janssen
,
T.
,
Lavrenov
,
I. V.
,
Magne
,
R.
,
Monbaliu
,
J.
,
Onorato
,
M.
,
Polnikov
,
V.
,
Resio
,
D.
,
Rogers
,
W. E.
,
Sheremet
,
A.
,
McKee Smith
,
J.
,
Tolman
,
H. L.
,
van Vledder
,
G.
,
Wolf
,
J.
, and
Young
,
I.
,
2007
, “
Wave Modelling—The State of the Art
,”
Prog. Oceanogr.
,
75
(
4
), pp.
603
674
.
7.
Ryszard
,
M. S.
,
1996
,
Ocean Surface Waves: Their Physics and Prediction
,
World Scientific
,
Singapore
.
8.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific Publishing Company
,
Singapore
.
9.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Eake
,
K.
,
Euring
,
J. A.
,
Gicnapp
,
A.
,
Hasselmann
,
D. E.
,
Kruseman
,
P.
,
Meerburg
,
A.
,
Olbers
,
D. J.
,
Richter
,
K.
,
Sell
,
W.
, and
Walden
,
H.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,” Ergänzungsheft, pp.
8
12
.
10.
Pierson
,
W. J.
, Jr.
, and
Moskowitz
,
L.
,
1964
, “
A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of SA Kitaigorodskii
,”
J. Geophys. Res.
,
69
(
24
), pp.
5181
5190
.
11.
Hasselmann
,
K.
,
1966
, “
Feynman Diagrams and Interaction Rules of Wave-Wave Scattering Processes
,”
Rev. Geophys.
,
4
(
1
), pp.
1
32
.
12.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
1980
,
Engineering Applications of Correlation and Spectral Analysis
,
Wiley-Interscience
,
New York
, p.
315
.
13.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2011
,
Random Data: Analysis and Measurement Procedures
, Vol.
729
,
John Wiley & Sons
,
New York
.
14.
Ablowitz
,
M. J.
,
2011
,
Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons
,
Cambridge University Press
,
Cambridge, UK
.
15.
Fenton
,
J. D.
,
1985
, “
A Fifth-Order Stokes Theory for Steady Waves
,”
J. Waterw. Port Coastal Ocean Eng.
,
111
(
2
), pp.
216
234
.
16.
Dysthe
,
K. B.
,
1979
, “
Note on a Modification to the Nonlinear Schrödinger Equation for Application to Deep Water Waves
,”
Proc. R. Soc. A
,
369
(
1736
), pp.
105
114
.
17.
Higuera
,
P.
,
Lara
,
J. L.
, and
Losada
,
I. J.
,
2013
, “
Realistic Wave Generation and Active Wave Absorption for Navier–Stokes Models: Application to OpenFOAM®
,”
Coastal Eng.
,
71
(
1
), pp.
102
118
.
18.
Higuera
,
P.
,
Losada
,
I. J.
, and
Lara
,
J. L.
,
2015
, “
Three-Dimensional Numerical Wave Generation With Moving Boundaries
,”
Coastal Eng.
,
101
(
1
), pp.
35
47
.
19.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
20.
Pilliod
,
J. E.
, Jr.
, and
Puckett
,
E. G.
,
2004
, “
Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces
,”
J. Comput. Phys.
,
199
(
2
), pp.
465
502
.
You do not currently have access to this content.