Abstract

Icing can jeopardize local infrastructure, hinder field operation, destroy vessel superstructures, and threaten life and property safety in the Arctic and other cold offshore and marine environments. Research on ice protection (both anti-icing and de-icing) technologies is critical to equipment, structures, and personnel in these environments. This review systematically evaluates a wide range of ice protection techniques divided into three main categories, i.e., active, passive, and hybrid ice protection techniques. Active anti-icing/de-icing technologies include mechanical, thermal, or chemical methods, requiring an additional energy source to prevent ice formation or remove accumulated ice from the target surfaces. Passive anti-icing/de-icing techniques can prevent ice accumulation or reduce ice adhesion without external energy sources; they create and maintain the icephobic properties of the target surfaces. Excessive energy consumption is a major technical limitation of active ice protection technologies. On the other hand, it is challenging for any passive technology to meet the long-term ice protection requirements in the Arctic or different cold offshore/marine environments. A combination of two or more active and passive ice protection methods, i.e., a hybrid approach, seems promising and can be applied in various situations according to the specific requirements of different vessels, offshore structures, and equipment.

References

1.
Civil Aviation Authority
,
2000
,
Aircraft Icing Handbook
,
Civil Aviation Authority
,
Lower Hutt, New Zealand
.
2.
Fakorede
,
O.
,
Feger
,
Z.
,
Ibrahim
,
H.
,
Ilinca
,
A.
,
Perron
,
J.
, and
Masson
,
C.
,
2016
, “
Ice Protection Systems for Wind Turbines in Cold Climate: Characteristics, Comparisons and Analysis
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
662
617
.
3.
Fortin
,
G.
, and
Perron
,
J.
,
2009
, “
Wind Turbine Icing and De-icing
,”
Proceedings of 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 5–8
, p.
274
.
4.
Makkonen
,
L.
,
1987
,
Atmospheric Icing on Sea Structures
,
U. S. Army Cold Reagions Research Engineering Laboratory, Hanover, NH
,
Reston, VA
, p.
117
.
5.
Ryerson
,
C. C.
,
2008
, “
Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety: Problems, Hazards, Needs, and Potential Transfer Technologies
,”
Erdc/Crrel Tr-08-14
, (
September
), p.
156
.
6.
Bahadur
,
V.
,
Mishchenko
,
L.
,
Hatton
,
B.
,
Taylor
,
J. A.
,
Aizenberg
,
J.
, and
Krupenkin
,
T.
,
2011
, “
Predictive Model for Ice Formation on Superhydrophobic Surfaces
,”
Langmuir
,
27
(
23
), pp.
14143
14150
.
7.
Sojoudi
,
H.
,
Wang
,
M.
,
Boscher
,
N. D.
,
McKinley
,
G. H.
, and
Gleason
,
K. K.
,
2016
, “
Durable and Scalable Icephobic Surfaces: Similarities and Distinctions From Superhydrophobic Surfaces
,”
Soft Matter
,
12
(
7
), pp.
1938
1963
.
8.
Yamada
,
Y.
,
Ikuta
,
T.
,
Nishiyama
,
T.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2014
, “
Droplet Nucleation on a Well-Defined Hydrophilic−Hydrophobic Surface of 10 Nm Order Resolution
.
Langmuir
,
30
(
48
), pp.
14532
14537
.
9.
Khan
,
F.
,
Ahmed
,
S.
,
Yang
,
M.
,
Hashemi
,
S. J.
,
Caines
,
S.
,
Rathnayaka
,
S.
, and
Oldford
,
D.
,
2015
, “
Safety Challenges in Harsh Environments: Lessons Learned
,”
Process Saf. Prog.
,
34
(
2
), pp.
191
195
.
10.
Chien
,
L.
,
2016
, “
Regarding Offshore Oil Rigs, What Does ‘harsh Environment’ Mean and Why Is It Important?—Quora
,” https://www.quora.com/Regarding-offshore-oil-rigs-what-does-harsh-environment-mean-and-why-is-it-important, Accessed March 13, 2018.
11.
Dehghani-Sanij
,
A. R.
,
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Sea Spray Icing Phenomena on Marine Vessels and Offshore Structures: Review and Formulation
,”
Ocean Eng.
,
132
, pp.
25
39
.
12.
Jones
,
K. F.
, and
Andreas
,
E. L.
,
2012
, “
Sea Spray Concentrations and the Icing of Fixed Offshore Structures
,”
Q. J. R. Meteorol. Soc.
,
138
(
662
), pp.
131
144
.
13.
Ryerson
,
C. C.
,
2011
, “
Ice Protection of Offshore Platforms
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
97
110
.
14.
Dehghani-sanij
,
A.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2015
, “
Analysis of Ice Accretion on Vertical Surfaces of Marine Vessels and Structures in Arctic Conditions
,”
Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,
St. John's, Newfoundland, Canada
,
May 31–June 5
, p. V007T06A056.
15.
Rashid
,
T.
,
Abbas Khawaja
,
H.
,
Edvardsen
,
K.
,
Khawaja
,
H. A.
, and
Edvardsen
,
K.
,
2016
, “
Review of Marine Icing and Anti-/De-icing Systems
,”
J. Mar. Eng. Technol.
,
15
(
2
), pp.
79
87
.
16.
Shekhtman
,
A. N.
,
1971
, “
The Probability and Intensity of the Icing-Up of Ocean-Going Vessels
,”
Naval Scientific and Technical Information Centre
,
Orpington, UK
,
1968
, April, pp.
55
65
.
17.
Aksyutin
,
L. R.
,
1979
, “
Icing of Ships
,”
Leningr. Sudostr. Russ.
,
2
(
3
), pp.
166
186
.
18.
Brown
,
R. D.
, and
Roebber
,
P.
,
1985
,
The Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation.
,
Atmospheric Environment Service, Climatological Services Division
,
Ontario, Canada
, p.
295
.
19.
Madi
,
E.
,
Pope
,
K.
,
Huang
,
W.
, and
Iqbal
,
T.
,
2019
, “
A Review of Integrating Ice Detection and Mitigation for Wind Turbine Blades
.
Renewable Sustainable Energy Rev.
,
103
, pp.
269
281
.
20.
Makkonen
,
L.
,
2012
, “
Ice Adhesion—Theory, Measurements and Countermeasures
,”
J. Adhes. Sci. Technol.
,
26
(
4–5
), pp.
413
445
.
21.
Bengaluru Subramanyam
,
S.
,
Kondrashov
,
V.
,
Rühe
,
J.
, and
Varanasi
,
K. K.
,
2016
, “
Low Ice Adhesion on Nano-textured Superhydrophobic Surfaces Under Supersaturated Conditions
,”
ACS Appl. Mater. Interfaces
,
8
(
20
), pp.
12583
12587
.
22.
Coclite
,
A. M.
,
Howden
,
R. M.
,
Borrelli
,
D. C.
,
Petruczok
,
C. D.
,
Yang
,
R.
,
Yagüe
,
J. L.
,
Ugur
,
A.
,
Chen
,
N.
,
Lee
,
S.
,
Jo
,
W. J.
,
Liu
,
A.
,
Wang
,
X.
, and
Gleason
,
K. K.
,
2013
, “
25th Anniversary Article: CVD Polymers: A New Paradigm for Surface Modification and Device Fabrication
,”
Adv. Mater.
,
25
(
38
), pp.
5392
5423
.
23.
Golovin
,
K.
,
Kobaku
,
S. P. R.
,
Lee
,
D. H.
,
DiLoreto
,
E. T.
,
Mabry
,
J. M.
, and
Tuteja
,
A.
,
2016
, “
Designing Durable Icephobic Surfaces
,”
Sci. Adv.
,
2
(
3
), p.
e1501496
.
24.
Pan
,
Y.
,
Shi
,
K.
,
Duan
,
X.
, and
Naterer
,
G. F. G. F.
,
2019
, “
Experimental Investigation of Water Droplet Impact and Freezing on Micropatterned Stainless Steel Surfaces With Varying Wettabilities
,”
Int. J. Heat Mass Transfer
,
129
, pp.
953
964
.
25.
Shi
,
K.
, and
Duan
,
X.
,
2019
, “
Heat Transfer Analysis of Icing Process on Metallic Surfaces of Different Wettabilities
,”
The 25th International Conference on Computational & Experimental Engineering and Sciences
,
Tokyo, Japan
,
Mar. 25–28
.
26.
Brassard
,
J. D.
,
Laforte
,
J. L.
,
Blackburn
,
C.
,
Perron
,
J.
, and
Sarkar
,
D. K.
,
2017
, “
Silicone Based Superhydrophobic Coating Efficient to Reduce Ice Adhesion and Accumulation on Aluminum Under Offshore Arctic Conditions
,”
Ocean Eng.
,
144
, pp.
135
141
.
27.
Coady
,
M. J.
,
Wood
,
M.
,
Wallace
,
G. Q.
,
Nielsen
,
K. E.
,
Kietzig
,
A. M.
,
Lagugné-Labarthet
,
F.
, and
Ragogna
,
P. J.
,
2017
, “
Icephobic Behavior of UV-Cured Polymer Networks Incorporated Into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability
,”
ACS Applied Materials & Interfaces
,
10
(
3
), pp.
2890
2896
.
28.
Tong
,
W.
,
Xiong
,
D.
,
Wang
,
N.
,
Wu
,
Z.
, and
Zhou
,
H.
,
2019
, “
Mechanically Robust Superhydrophobic Coating for Aeronautical Composite Against Ice Accretion and Ice Adhesion
,”
Compos. Part B Eng.
,
176
, p.
107267
.
29.
Zheng
,
S.
,
Bellido-Aguilar
,
D. A.
,
Wu
,
X.
,
Zhan
,
X.
,
Huang
,
Y.
,
Zeng
,
X.
,
Zhang
,
Q.
, and
Chen
,
Z.
,
2019
, “
Durable Waterborne Hydrophobic Bio-epoxy Coating with Improved Anti-icing and Self-cleaning Performance
,”
ACS Sustainable Chem. Eng.
,
7
(
1
), pp.
641
649
.
30.
Hejazi
,
V.
,
Sobolev
,
K.
, and
Nosonovsky
,
M.
,
2013
, “
From Superhydrophobicity to Icephobicity: Forces and Interaction Analysis
,”
Sci. Rep.
,
3
(
1
), p.
2194
.
31.
Liu
,
B.
,
Zhang
,
K.
,
Tao
,
C.
,
Zhao
,
Y.
,
Li
,
X.
,
Zhu
,
K.
, and
Yuan
,
X.
,
2016
, “
Strategies for Anti-icing: Low Surface Energy or Liquid-Infused?
,”
RSC Adv.
,
6
(
74
), pp.
70251
70260
.
32.
Kreder
,
M. J.
,
Alvarenga
,
J.
,
Kim
,
P.
, and
Aizenberg
,
J.
,
2016
, “
Design of Anti-icing Surfaces: Smooth, Textured or Slippery?
Nat. Rev. Mater.
,
1
(
1
), pp.
1
15
.
33.
Farhadi
,
S.
,
Farzaneh
,
M.
, and
Kulinich
,
S. A.
,
2011
, “
Anti-icing Performance of Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
257
(
14
), pp.
6264
6269
.
34.
Kim
,
P.
,
Wong
,
T. S.
,
Alvarenga
,
J.
,
Kreder
,
M. J.
,
Adorno-Martinez
,
W. E.
, and
Aizenberg
,
J.
,
2012
, “
Liquid-Infused Nanostructured Surfaces With Extreme Anti-ice and Anti-frost Performance
,”
ACS Nano
,
6
(
8
), pp.
6569
6577
.
35.
Wong
,
T. S.
,
Kang
,
S. H.
,
Tang
,
S. K. Y.
,
Smythe
,
E. J.
,
Hatton
,
B. D.
,
Grinthal
,
A.
, and
Aizenberg
,
J.
,
2011
, “
Bioinspired Self-Repairing Slippery Surfaces With Pressure-Stable Omniphobicity
,”
Nature
,
477
(
7365
), pp.
443
447
.
36.
Zhang
,
D.
,
Jiang
,
Y.
,
Wen
,
X.
, and
Zhang
,
L.
,
2013
, “
Phase Separation and Crystallization of Binary Nanoparticles Induced by Polymer Brushes
,”
Soft Matter
,
9
(
6
), pp.
1789
1797
.
37.
Lv
,
J.
,
Song
,
Y.
,
Jiang
,
L.
, and
Wang
,
J.
,
2014
, “
Bio-inspired Strategies for Anti-icing
,”
ACS Nano
,
8
(
4
), pp.
3152
3169
.
38.
Rykaczewski
,
K.
,
Anand
,
S.
,
Subramanyam
,
S. B.
, and
Varanasi
,
K. K.
,
2013
, “
Mechanism of Frost Formation on Lubricant-Impregnated Surfaces
,”
Langmuir
,
29
(
17
), pp.
5230
5238
.
39.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
40.
Liu
,
Q.
,
Yang
,
Y.
,
Huang
,
M.
,
Zhou
,
Y.
,
Liu
,
Y.
, and
Liang
,
X.
,
2015
, “
Durability of a Lubricant-Infused Electrospray Silicon Rubber Surface as an Anti-icing Coating
,”
Appl. Surf. Sci.
,
346
, pp.
68
76
.
41.
Chen
,
J.
,
Luo
,
Z.
,
Fan
,
Q.
,
Lv
,
J.
, and
Wang
,
J.
,
2014
, “
Anti-ice Coating Inspired by Ice Skating
,”
Small
,
10
(
22
), pp.
4693
4699
.
42.
Chen
,
J.
,
Dou
,
R.
,
Cui
,
D.
,
Zhang
,
Q.
,
Zhang
,
Y.
,
Xu
,
F.
,
Zhou
,
X.
,
Wang
,
J.
,
Song
,
Y.
, and
Jiang
,
L.
,
2013
, “
Robust Prototypical Anti-icing Coatings With a Self-lubricating Liquid Water Layer Between Ice and Substrate
,”
ACS Appl. Mater. Interfaces
,
5
(
10
), p.
40
.
43.
Chen
,
D.
,
Gelenter
,
M. D.
,
Hong
,
M.
,
Cohen
,
R. E.
, and
McKinley
,
G. H.
,
2017
, “
Icephobic Surfaces Induced by Interfacial Nonfrozen Water
,”
ACS Appl. Mater. Interfaces
,
9
(
4
), pp.
4202
4214
.
44.
Dou
,
R.
,
Chen
,
J.
,
Zhang
,
Y.
,
Wang
,
X.
,
Cui
,
D.
,
Song
,
Y.
,
Jiang
,
L.
, and
Wang
,
J.
,
2014
, “
Anti-icing Coating With an Aqueous Lubricating Layer
,”
ACS Appl. Mater. Interfaces
,
6
(
10
), pp.
6998
7003
.
45.
Li
,
R.
,
Zhou
,
Y.
, and
Duan
,
X.
,
2019
, “
A Novel Composite Phase Change Material With Paraffin Wax in Tailings Porous Ceramics
,”
Appl. Therm. Eng.
,
151
, pp.
115
123
.
46.
Parsazadeh
,
M.
, and
Duan
,
X.
,
2018
, “
Numerical Study on the Effects of Fins and Nanoparticles in a Shell and Tube Phase Change Thermal Energy Storage Unit
,”
Appl. Energy
,
216
, pp.
142
156
.
47.
Chatterjee
,
R.
,
Beysens
,
D.
, and
Anand
,
S.
,
2019
, “
Delaying Ice and Frost Formation Using Phase-Switching Liquids
,”
Adv. Mater.
,
31
(
17
), p.
1807812
.
48.
Dash
,
S.
,
de Ruiter
,
J.
, and
Varanasi
,
K. K.
,
2018
, “
Photothermal Trap Utilizing Solar Illumination for Ice Mitigation
,”
Sci. Adv.
,
4
(
8
), pp.
0127
.
49.
Golovin
,
K.
,
Dhyani
,
A.
,
Thouless
,
M. D.
, and
Tuteja
,
A.
,
2019
, “
Low–interfacial toughness materials for effective large-scale deicing
,”
Science
,
364
(
6438
), pp.
371
375
.
50.
Zhao
,
Z.
,
Chen
,
H.
,
Liu
,
X.
,
Liu
,
H.
, and
Zhang
,
D.
,
2018
, “
Development of High-Efficient Synthetic Electric Heating Coating for Anti-icing/De-icing
,”
Surf. Coat. Technol.
,
349
, pp.
340
346
.
51.
Liu
,
X.
,
Chen
,
H.
,
Zhao
,
Z.
,
Yan
,
Y.
, and
Zhang
,
D.
,
2019
, “
Slippery Liquid-Infused Porous Electric Heating Coating for Anti-icing and De-icing Applications
,”
Surf. Coat. Technol.
,
374
, pp.
889
896
.
52.
Kenisarin
,
M.
, and
Mahkamov
,
K.
,
2007
, “
Solar Energy Storage Using Phase Change Materials
,”
Renewable Sustainable Energy Rev.
,
11
(
9
), pp.
1913
1965
.
53.
Cocu
,
X.
,
Nicaise
,
D.
, and
Rachidi
,
S.
,
2010
, “
The Use of Phase Change Materials to Delay Pavement Freezing
,”
The XIII International Winter Road Congress
,
Québec, Canada
,
Feb. 8–11
, pp.
1
25
.
54.
Wang
,
F.
,
Ding
,
W.
,
He
,
J.
, and
Zhang
,
Z.
,
2019
, “
Phase Transition Enabled Durable Anti-icing Surfaces and Its DIY Design
,”
Chem. Eng. J.
,
360
, pp.
243
249
.
55.
Cheng
,
T.
,
He
,
R.
,
Zhang
,
Q.
,
Zhan
,
X.
, and
Chen
,
F.
,
2015
, “
Magnetic Particle-Based Superhydrophobic Coatings With Excellent Anti-icing and Thermoresponsive De-icing Performance
,”
J. Mater. Chem. A
,
3
(
43
), pp.
21637
21646
.
You do not currently have access to this content.