Abstract

The vortex-induced vibration for aquatic clean energy (VIVACE) converter harnesses hydrokinetic energy by enhancing flow-induced oscillations (FIOs) of elastically supported rigid cylinders in a river, tide, or ocean current. The harnessing power depends on the intensity of the oscillation, which is a consequence of the flow–structure interaction. The inflow condition for the downstream (second) cylinder is slowed down and perturbed by the upstream (first) cylinder, due to the shielding effect. Therefore, the optimal structural parameters, i.e., stiffness and damping ratio, for the second cylinder may be different from the first cylinder, in terms of energy harnessing. To improve the performance of the VIVACE converter, a series of experiments are conducted in a recirculating water channel, with various stiffness combinations of two cylinders in tandem. Results show that the stiffness of the second cylinder, K2, does not affect the energy harnessing power in vortex-induced vibration (VIV) occurring at low speeds, because the oscillation of the downstream cylinder in this velocity range is completely dominated by the wake of the upstream cylinder. K2 has a great influence on the harnessing power at higher velocities in the transition region from VIV to galloping and in galloping. Changing K2 onsets and enhances galloping at lower flow velocity and harnesses up to 110% more energy than the case of K1 = K2.

References

1.
Blevins
,
R. D.
,
1990
,
Flow-induced Vibrations
,
Van Nostrand Reinhold
,
New York
.
2.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders: Volume 2: Applications
,
Oxford University Press
,
Oxford
.
3.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
4.
Bernitsas
,
M. M.
,
2016
,
Harvesting Energy by Flow Included Motions
,
Springer Handb. Ocean Eng., Springer
,
Berlin
, pp.
1163
1244
.
5.
Kumar
,
R.
,
Sohn
,
C.-H.
, and
Gowda
,
B.
,
2008
, “
Passive Control of Vortex-Induced Vibrations: An Overview
,”
Recent Patents Mech. Eng.
,
1
(
1
), pp.
1
11
.
6.
Park
,
H.
,
Ajith Kumar
,
R.
, and
Bernitsas
,
M. M.
,
2016
, “
Suppression of Vortex-Induced Vibrations of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
111
, pp.
218
233
.
7.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A new Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
8.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
Fish Exploiting Vortices Decrease Muscle Activity
,”
Science
,
302
(
5650
), pp.
1566
1569
.
9.
Lacey
,
R. W. J.
,
Neary
,
V. S.
,
Liao
,
J. C.
,
Enders
,
E. C.
, and
Tritico
,
H. M.
,
2012
, “
The Ipos Framework: Linking Fish Swimming Performance in Altered Flows From Laboratory Experiments to Rivers
,”
River Res. Appl.
,
28
(
4
), pp.
429
443
.
10.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Ajith Kumar
,
R.
,
2013
, “
Multicylinder Flow-Induced Motions: Enhancement by Passive Turbulence Control at 28,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
1
), p.
021802
.
11.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
.
12.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2017
, “
Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders in Flow Induced Motions: Effect of Spacing and Stiffness
,”
Renewable Energy
,
107
, pp.
61
80
.
13.
Chang
,
C. C.
,
Ajith Kumar
,
R.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder with Surface Roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.
14.
Park
,
H.
,
Bernitsas
,
M. M.
, and
Ajith Kumar
,
R.
,
2012
, “
Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
4
), p.
041801
.
15.
Lee
,
J. H.
, and
Bernitsas
,
M. M.
,
2011
, “
High-Damping, High-Reynolds VIV Tests for Energy Harnessing Using the VIVACE Converter
,”
Ocean Eng.
,
38
(
16
), pp.
1697
1712
.
16.
Sun
,
H.
,
Ma
,
C.
, and
Bernitsas
,
M. M.
,
2018
, “
Hydrokinetic Power Conversion Using Flow Induced Vibrations With Cubic Restoring Force
,”
Energy
,
153
, pp.
490
508
.
17.
Ma
,
C.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2018
, “
Nonlinear Piecewise Restoring Force in Hydrokinetic Power Conversion Using Flow-Induced Vibrations of two Tandem Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041901
.
18.
Kim
,
E. S.
,
2013
, “
Synergy of Multiple Cylinders in Flow Induced Motion for Hydrokinetic Energy Harnessing
,”
Doctoral dissertation.
19.
Walker
,
D. T.
,
Lyzenga
,
D. R.
,
Ericson
,
E. A.
, and
Lund
,
D. E.
,
1996
, “
Radar Backscatter and Surface Roughness Measurements for Stationary Breaking Waves
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
452
(
1952
), pp.
1953
1984
.
20.
Bernitsas
,
K.
,
Raghavan
,
M. M.
, and
Maroulis
,
D.
,
2007
, “
Effect of Free Surface on VIV for Energy Harnessing at 8 × 103 < Re < 1.5 × 105
,”
Proceedings of the 26th International Conference on Offshore Mechanical Arctical Engineering
,
San Diego, CA
,
June 10–15
.
21.
Raghavan
,
K.
,
Bernitsas
,
M. M.
, and
Maroulis
,
D. E.
,
2009
, “
Effect of Bottom Boundary on VIV for Energy Harnessing at 8 × 103 < Re < 1.5 × 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
3
), p.
031102
.
22.
Kinaci
,
O. K.
,
Lakka
,
S.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Tip-Flow on Vortex Induced Vibration of Circular Cylinders for Re < 1.2 × 105
,”
Ocean Eng.
,
117
, pp.
130
142
.
23.
Sun
,
H.
,
Kim
,
E. S.
,
Bernitsas
,
M. P.
, and
Bernitsas
,
M. M.
,
2015
, “
Virtual Spring-Damping System for Flow Induced Motion Experiments
,”
Proceedings of the International Conference on Offshore Mechanical Arctical Engineering—OMAE
,
Newfoundland, Canada
,
May 31–June 5
, Vol
7
, pp.
22
27
.
24.
Lee
,
J. H.
,
Xiros
,
N.
, and
Bernitsas
,
M. M.
,
2011
, “
Virtual Damperspring System for VIV Experiments and Hydrokinetic Energy Conversion
,”
Ocean Eng.
,
38
(
5–6
), pp.
732
747
.
25.
Park
,
H.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
.
26.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Kumar
,
R. A.
,
2011
, “
Multi-cylinder Flow-Induced Motions: Enhancement by Passive Turubulence Control at 28,000 < Re < 120,000
,”
Proceedings of the International Conference on Offshore Mechanical Arctical Engineering—OMAE
,
Rotterdam, The Netherlands
,
June 19–24
, pp.
249
260
.
You do not currently have access to this content.