Abstract

It is important to predict the pressure loss due to hydraulic transport of large solid particles for the design of subsea mining system. The mixture flow in the lifting pipe is expected to be unsteady in the actual mining system. The authors develop the one-dimensional mathematical model to predict the pressure loss of pulsating mixture flow in a static vertical pipe assuming that the flow in the pipe is fully developed. The experiment on hydraulic transport of solid particles was carried out to obtain the data for the investigation of the effects of flow fluctuation on pressure loss in a static vertical pipe. In the experiment, alumina beads and glass beads were used as solid particles, and the experimental parameters were mixture velocity, solid concentration, pulsating period, and pulsating amplitude. The proposed model was validated by a comparison with experimental data. Furthermore, we calculated the pressure losses due to hydraulic transports of polymetallic sulfide ores and manganese nodules using the proposed model. The calculation results showed that the fluctuating component in pulsating mixture flow should be considered for the design of lifting system and that the homogeneous mixture model could not be applied to the prediction of the pressure loss unless the mixture concentration is low and the pulsating period is short.

References

1.
Japanese Cabinet Decision
,
2018
, “
The Basic Plan on Ocean Policy
,” https://www8.cao.go.jp/ocean/english/plan/pdf/plan03_e.pdf
2.
Japanese Ministry of Economy, Trade and Industry
,
2019
, “
Plan for the Development of Marine Energy and Mineral Resources
,” (in Japanese), https://www.enecho.meti.go.jp/category/resources_and_fuel/strategy/pdf/report1902.pdf.
3.
Okamoto
,
N.
,
Shiokawa
,
S.
,
Kawano
,
S.
,
Sakurai
,
H.
,
Yamaji
,
N.
, and
Kurihara
,
M.
,
2018
, “
Current Status of
Japan’s Activities for Deep-Sea Commercial Mining Campaign
,”
Proceedings of 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO)
,
Kobe, Japan
,
May 28–31
.
4.
Japanese Ministry of Economy, Trade and Industry, Japan Oil, Gas and Metals National Corporation, and Advisory Committee on SMS Mining
,
2013
, “Final Report of SMS Development Program Stage I” (in Japanese), http://www.jogmec.go.jp/content/300110684.pdf.
5.
Leach
,
S.
,
Smith
,
G.
, and
Berndt
,
R.
,
2012
, “
SME Special Session: Subsea Slurry Lift Pump Technology—SMS Development
,”
Proc. Offshore Technology Conference (OTC)
,
Houston, TX
, SPE Paper No. OTC-23224.
6.
Masanobu
,
S.
,
Takano
,
S.
,
Fujiwara
,
T.
,
Kanada
,
S.
,
Ono
,
M.
, and
Sasagawa
,
H.
,
2017
, “
Study on Hydraulic Transport of Large Solid Particles in Inclined Pipes for Subsea Mining
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
5
), p.
051401
.
7.
Yamamoto
,
J.
,
2018
, “
Research on the Essential Technologies for the Development of
Seafloor Massive Sulfides
,”
Proc. 18th Research Presentation Meeting of National Maritime Research Institute
,
Tokyo, Japan
,
July 18
, pp.
16
24
(in Japanese).
8.
Takano
,
S.
,
Masanobu
,
S.
,
Kanada
,
S.
,
Ono
,
M.
,
Araki
,
M.
, and
Sasagawa
,
H.
,
2017
, “
Experimental Studies of Pressure Loss for Large Particle Slurry Transport in Oscillated Pipe for Subsea Mining
,”
Proc. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No. OMAE2017-61238.
9.
Durand
,
R.
,
1953
, “
Basic Relationships of the Transportation of Solids in Pipes—Experimental Research
,”
Minnesota International Hydraulics Conference, International Association for Hydraulic Research
,
Minneapolis, MN
,
Sept. 1–4
, pp.
89
103
.
10.
Newitt
,
D. M.
,
Richardson
,
J. F.
,
Abbott
,
M.
, and
Turtle
,
R. B.
,
1955
, “
Hydraulic Conveying of Solids in Horizontal Pipes
,”
Trans. Inst. Chem. Eng.
,
33
, pp.
93
113
.
11.
Newitt
,
D. M.
,
Richardson
,
J. F.
, and
Gliddon
,
B. J.
,
1961
, “
Hydraulic Conveying of Solids in Vertical Pipes
,”
Trans. Inst. Chem. Eng.
,
39
, pp.
93
100
.
12.
Xia
,
J. X.
,
Ni
,
J. R.
, and
Mendoza
,
C.
,
2004
, “
Hydraulic Lifting of Manganese Nodules Through a Riser
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
1
), pp.
72
77
.
13.
Yoon
,
C. H.
,
Lee
,
D. K.
,
Park
,
Y. C.
, and
Kwon
,
S. K.
,
2005
, “
On-Land Hydraulic Pumping Experiments of 30-Meter Height Scale
,”
15th International Offshore and Polar Engineering Conference (ISOPE)
,
Seoul, South Korea
,
June 19–24
, pp.
417
420
.
14.
Worster
,
R. C.
, and
Denny
,
D. F.
,
1955
, “
Hydraulic Transport of Solid Material in Pipes
,”
Proc. Inst. Mech. Eng.
,
169
(
32
), pp.
563
573
.
15.
Graf
,
W. H.
,
1971
,
Hydraulic of Sediment Transport
,
McGraw-Hill
,
New York
, Chap. 15.
16.
Ravelet
,
F.
,
Bakir
,
F.
,
Khelladi
,
S.
, and
Rey
,
R.
,
2013
, “
Experimental Study of Hydraulic Transport of Large Particles in Horizontal Pipes
,”
Exp. Therm. Fluid. Sci.
,
45
, pp.
187
197
.
17.
Kaushal
,
D. R.
,
Thinglas
,
T.
,
Tomita
,
Y.
,
Kuchii
,
S.
, and
Tsukamoto
,
H.
,
2012
, “
CFD Modeling for Pipeline Flow of Fine Particles at High Concentration
,”
Int. J. Multiphase Flow
,
43
, pp.
85
100
.
18.
Singh
,
J. P.
,
Kumar
,
S.
, and
Mohapatra
,
S. K.
,
2017
, “
Modelling of Two Phase Solid-Liquid Flow in Horizontal Pipe Using Computational Fluid Dynamics Technique
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20133
20137
.
19.
Jothi
,
M.
,
Haimanot
,
R.
, and
Kumar
,
U.
,
2019
, “
Investigation on Pressure Drop of Fluid-Solid Mixture Flow Through Pipes Using CFD and SK Model
,”
J. Appl. Math. Phys.
,
7
(
1
), pp.
218
232
.
20.
Zhou
,
M.
,
Wang
,
S.
,
Kuang
,
S.
,
Luo
,
K.
,
Fan
,
J.
, and
Yu
,
A.
,
2019
, “
CFD-DEM Modelling of Hydraulic Conveying of Solid Particles in a Vertical Pipe
,”
Powder Technol.
,
354
, pp.
893
905
.
21.
Saito
,
T.
,
Usami
,
T.
, and
Kiyono
,
F.
,
1991
, “
Pressure Loss in Solid-Water Two-Phase Flow in a Swaying Pipe
”, Liquid-Solid Flows, FED, Vol.
118
, ASME, pp.
223
228
.
22.
Xia
,
J. X.
,
Ni
,
J. R.
, and
Mendoza
,
C.
,
2004
, “
Upward Flow of Large Size Particles—Water Mixtures Through Swaying Pipes
,”
J. Trans. Eng.
,
130
(
4
), pp.
535
543
.
23.
Hannot
,
S. D. A.
, and
van Wijk
,
J. M.
,
2014
, “
Heave Induced Internal Flow Fluctuations in Vertical Transport Systems for Deep Ocean Mining
,”
Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No. OMAE2014-23684.
24.
Wiberg
,
P. L.
, and
Smith
,
J. D.
,
1989
, “
Model for Calculating Bed Load Transport of Sediment
,”
J. Hydraulic Eng.
,
115
(
1
), pp.
101
123
.
25.
Hinze
,
J. O.
,
1975
,
Turbulence
, 2nd ed.,
McGraw-Hill
,
New York
, Chap. 5.
26.
Sekine
,
M.
, and
Kikkawa
,
H.
,
1987
, “
Study on the Fall Velocity of Particles in Oscillating Fluids
,”
Proc. Jpn. Soc. Civil Eng.
,
387
(
II-8
), pp.
209
218
(in Japanese).
27.
Hayashi
,
T.
, and
Ohashi
,
M.
,
1980
, “
On the Turbulent Characteristics of a Settling Particle in Fluid
,”
Proc. Jpn. Conf. Hydraulics
,
24
, pp.
7
12
(in Japanese).
28.
Baird
,
M. H. I.
,
Senior
,
M. G.
, and
Thompson
,
R. J.
,
1967
, “
Terminal Velocities of Spherical Particles in a Vertically Oscillating Liquid
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
551
558
.
29.
Tunstall
,
E. B.
, and
Houghton
,
G.
,
1968
, “
Retardation of Falling Spheres by Hydrodynamic Oscillations
,”
Chem. Eng. Sci.
,
23
(
9
), pp.
1067
1081
.
30.
Ikeda
,
S.
,
Yamasaka
,
M.
,
Kiuchi
,
K.
, and
Takahashi
,
H.
,
1988
, “
Fall Velocity of Spheres in Vertically Oscillating Fluid
,”
Proc. Jpn. Soc. Civil Eng.
,
393
(
II-9
), pp.
57
66
(in Japanese).
31.
Richardson
,
J. F.
, and
Zaki
,
W. N.
,
1954
, “
Sedimentation and Fluidisation: Part 1
,”
Trans. Inst. Chem. Eng.
,
32
, pp.
35
53
.
32.
Saito
,
T.
,
Usami
,
T.
,
Kitahara
,
R.
, and
Yamazaki
,
T.
,
1985
, “
Studies on Hydraulic Properties of Large and Nonspherical Particles
,”
J. Min. Saf.
,
31
(
3
), pp.
25
33
(in Japanese).
33.
Parenteau
,
T.
,
2011
, “
Flow Assurance for Deep Ocean Mining—Pressure Requirement Through S-Shape Riser and Jumper
,”
Proc. Offshore Technology Conference (OTC)
,
Houston, TX
, SPE Paper No. OTC-21237.
34.
Ohmi
,
M.
, and
Iguchi
,
M.
,
1980
, “
Flow Pattern and Frictional Losses in Pulsating Pipe Flow Part 3 General Representation of Turbulent Flow Pattern
,”
Bull. Jpn. Soc. Mech. Eng.
,
23
(
186
), pp.
2029
2036
.
35.
Hayashi
,
N.
,
Takano
,
S.
,
Shiotsuki
,
K.
,
Terao
,
T.
,
Masanobu
,
S.
, and
Kawano
,
S.
,
2018
, “
Study on Slurry Transportation in Riser for Seafloor Massive Sulfides
,”
Proceedings of 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO).
36.
Masanobu
,
S.
,
Kato
,
S.
,
Ishida
,
S.
, and
Uto
,
S.
,
2010
, “
Research and Development of Offshore Platforms for SMS Mining: Part2—Conceptual Design of the Platform
,”
Proceedings of ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No. OMAE2010-20836.
37.
Ramaprian
,
B. R.
, and
Tu
,
S. W.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow. Part 2. The Detailed Structure of the Flow
,”
J. Fluid Mech.
,
137
, pp.
59
81
.
38.
Masanobu
,
S.
,
Takano
,
S.
,
Fujiwara
,
T.
,
Kanada
,
S.
, and
Ono
,
M.
,
2015
, “
Experimental Studies of Pressure Loss in Inclined Pipe in Slurry Transport for Subsea Mining
,”
Proceedings of ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No. OMAE2015-41211.
You do not currently have access to this content.