Abstract

Ice accretion on marine vessels and offshore structures is a severe hazard in the Polar regions. There are increasing activities related to oil and gas exploration, tourism, cargo transport, and fishing in the Arctic. Ice accretion can cause vessel instability, excess load on marine structures, and represents a safety risk for outdoor working environment and operations. Freezing sea spray is the main contributor to marine icing. For safe operations in cold climates, it is essential to have verified models for the prediction of icing. Sea spray icing forecast models have improved. Empirical and theoretical models providing icing rates based may be useful as guidelines. For predicting the distribution of icing on a surface at the design stage, computational fluid dynamics has to be applied along with a freezing module. State-of-the-art models for numerical simulation of sea spray icing are still not fully capable of modeling complex ship-sea-wind interactions with spray generation and impact of shipped water. Existing models include a good understanding of spray flow effects and freezing. Further development should focus on developing models for dynamic ship-sea-wind interactions, in particular including spray generation, effects of shipped water, and distribution of icing on the vessel surface. More experimental and full-scale data are needed for the development and verification of new and improved models. Models that estimate ice distribution may improve the winterization design process and reduce the effort required for de-icing. Improved methods for de-icing and anti-icing will reduce the impact of sea spray icing and increase safety for marine operations in cold waters.

References

1.
AMAP
,
2007
,
Arctic Oil and Gas 2007
.
Arctic Monitoring and Assessment Programme (AMAP)
,
xiii
.
Oslo, Norway
.
2.
The Barents Observer
, 17-Dec-2019, “
Norway Considers Size Limitation on Passenger Ships Sailing at Svalbard
.”
3.
Melia
,
N.
,
Haines
,
K.
, and
Hawkins
,
E.
,
2016
, “
Sea Ice Decline and 21st Century Trans-Arctic Shipping Routes
,”
Geophys. Res. Lett.
,
43
(
18
), pp.
9720
9728
.
4.
Kulyakhtin
,
A.
,
2014
, “
Numerical Modelling and Experiments on Sea Spray Icing
,”
Doctoral thesis
,
Department of Civil and Transport Engineering. Norwegian University of Science and Technology (NTNU)
,
Norway
.
5.
Samuelsen
,
E. M.
,
2017
,
Prediction of Ship Icing in Arctic Waters – Observations and Modelling for Application in Operational Weather Forecasting
,
UiT The Arctic University of Norway
,
Tromsø, Norway
.
6.
Ryerson
,
C. C.
,
2011
, “
Ice Protection of Offshore Platforms
,”
Cold Reg. Sci. Technol.
,
65
(
1
), pp.
97
110
.
7.
Stallabrass
,
1980
, “
Trawler Icing—A Compilation of Work Done At N. R. C
.”
Mech. Eng. Rep. MD-56, N.R.C. No. 19372 (National Res. Counc. Ottawa Canada)
.
8.
ISO 19906
,
2019
,
Petroleum and Natural Gas Industries—Arctic Offshore Structures
, 2nd ed.,
International Organization for Standardization
,
Geneva, Switzerland
.
9.
Mahmood
,
M.
, and
Revenga
,
A.
,
2006
, “
Design Aspects of Winterized and Arctic LNG Carriers—A Classification Perspective
,”
Proceedings of OMAE 25th International Conference on Offshore Mechanics and Arctic Engineering
,
Hamburg, Germany
,
June 4–9, 2006
, pp.
1
8
.
10.
DNVGL-OS-A201
,
2015
, “
Offshore Standard DNV GL AS Winterization for Cold Climate Operations (Edition July 2015)
.”
11.
ISO 35106
,
2017
,
Petroleum and Natural Gas Industries—Arctic Operations—Metocean, Ice, and Seabed Data
.
12.
Polakis
,
M.
,
Zachariadis
,
P.
, and
de Kat
,
J. O.
,
2019
,
Sustainable Shipping
,
H. N.
Psaraftis
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
93
135
.
13.
Hang Hou
,
Y.
,
Kang
,
K.
, and
Liang
,
X.
,
2019
, “
Vessel Speed Optimization for Minimum EEOI in Ice Zone Considering Uncertainty
,”
Ocean Eng.
,
188
, p.
106240
.
14.
Lozowski
,
E. P.
,
Szilder
,
K.
, and
Makkonen
,
L.
,
2000
, “
Computer Simulation of Marine Ice Accretion
,”
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
,
358
(
1776
), pp.
2811
2845
.
15.
Ashcroft
,
J.
,
1985
, “
Potential Ice and Snow Accretion on North Sea Rigs and Platforms
”,
Mar. Note no. 1, Br. Meteorol. Off. Brac
.
16.
Romagnoli
,
1988
, “‘
Ice Growth Modelling for Icing Control Purposes of Offshore Marine Units Employed by the Petroleum Industry
’,”
International Association for Hydraulic Re Posium on Ice
,
Sapporo
, pp.
486
497
.
17.
Overland
,
J. E.
,
1990
, “
Prediction of Vessel Icing for Near-Freezing Sea Temperatures
,”
Weather Forecast.
,
5
(
1
), pp.
62
77
.
18.
Roebber
,
P.
, and
Mitten
,
P.
,
1987
, Modelling and Measurement of Icing in Canadian Waters. Report (Canadian Climate Centre), no. 87-15.
19.
Horjen and Vefsnmo
,
1985
, “
A Numerical sea Spray Icing Model Including the Effect of a Moving Water Film
,”
Proceedings of the International Workshop on Offshore Winds and Icing
,
Halifax
, pp.
152
164
.
20.
Horjen
,
I.
,
2013
, “
Numerical Modeling of Two-Dimensional Sea Spray Icing on Vessel-Mounted Cylinders
,”
Cold Reg. Sci. Technol.
,
93
, pp.
20
35
.
21.
Forest
,
T. W.
,
Lozowski
,
E. P.
, and
Gagnon
,
R.
,
2005
, “
Estimating Marine Icing on Offshore Structures Using RIGICE04
,”
Proceedings of the International Workshop on Atmospheric Icing on Structures (IWAIS)
,
Montreal, Canada
,
June
.
22.
Kulyakhtin
,
A.
, and
Tsarau
,
A.
,
2014
, “
A Time-Dependent Model of Marine Icing With Application of Computational Fluid Dynamics
,”
Cold Reg. Sci. Technol.
,
104–105
, pp.
33
44
.
23.
Samuelsen
,
E. M.
,
Edvardsen
,
K.
, and
Graversen
,
R. G.
,
2017
, “
Modelled and Observed sea-Spray Icing in Arctic-Norwegian Waters
,”
Cold Reg. Sci. Technol.
,
134
, pp.
54
81
.
24.
Dehghani
,
S.
,
Naterer
,
G.
, and
Muzychka
,
Y. S.
,
2018
, “
3-D Trajectory Analysis of Wave-Impact sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
146
, pp.
72
80
.
25.
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2017
, “
Numerical Solution of Rapid Freezing of Sea Water on Cold Substrates
,”
Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
, pp.
1
8
.
26.
Mintu
,
S.
,
Molyneux
,
D.
, and
Oldford
,
D.
,
2016
, “
State-of-the-Art Review of Research on Ice Accretion Measurements and Modelling
,”
Arctic Technology Conference
, 10.4043/27422-MS.
27.
Makkonen
,
L.
,
Brown
,
R. D.
, and
Mitten
,
P. T.
,
1991
, “
Comments on “Prediction of Vessel Icing for Near-Freezing Sea Temperatures
,”
Weather Forecast
,
6
(
4
), pp.
565
567
.
28.
Dehghani-Sanij
,
A.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2015
, “
Analysis of Ice Accretion on Vertical Surfaces of Marine Vessels and Structures in Arctic Conditions
,”
Volume 7: Ocean Engineering
, pp.
1
7
.
29.
Dehghani-Sanij
,
A. R.
,
MacLachlan
,
S.
,
Naterer
,
G. F.
,
Muzychka
,
Y. S.
,
Haynes
,
R. D.
, and
Enjilela
,
V.
,
2020
, “
Multistage Cooling and Freezing of a Saline Spherical Water Droplet
,”
Int. J. Therm. Sci.
,
147
, p.
106095
.
30.
Polar Code
,
2017
, “
International Code for ships operating in Polar Waters
,” IMO.
31.
DNV
,
2015
, “
Rules for Classification Ships Part 6 Additional class notations Chapter 6 Cold Climate
,” no. July.
32.
Kulyakhtin
,
A.
,
Shipilova
,
O.
,
Libby
,
B.
, and
Løset
,
S.
,
2012
, “
Full-Scale 3D CFD Simulation of Spray Impingement on a Vessel Produced by Ship-Wave Interaction
,”
Proceedings of the 21st IAHR International Symposium ICE
, pp.
1129
1141
.
33.
Zakrzewski
,
W. P.
,
1986
, “
Icing of Fishing Vessels. Part I: Splashing a Ship With Spray
,”
Proceedings of the 8th International IAHR Symposium on ICE
,
Iowa City
,
Aug. 18–22, 1986
, Vol.
2
, pp.
179
194
.
34.
Dehghani
,
M.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2017
, “
Water Breakup Phenomena in Wave-Impact sea Spray on a Vessel
,”
Ocean Eng.
,
134
, pp.
50
61
.
35.
Saha
,
D.
,
Dehghani
,
S. R.
,
Pope
,
K.
, and
Muzychka
,
Y.
,
2016
The Extent of Water Sheet Breakup on a Vertical Surface
,”
Arctic Technology Conference.
36.
Ryerson
,
2013
, “
Icing Management for Coast Guard Assets
,”
U.S. Army Engineer Research and Development Center
,
Hanover, New Hampshire
.
37.
Fuentes
,
E.
,
Coe
,
H.
,
Green
,
D.
,
de Leeuw
,
G.
, and
McFiggans
,
G.
,
2010
, “
Laboratory-Generated Primary Marine Aerosol Via Bubble-Bursting and Atomization
,”
Atmos. Meas. Tech.
,
3
(
1
), pp.
141
162
.
38.
Lewis
,
R.
, and
Schwartz
,
E.
,
2004
,
Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review
, Vol. 152,
American Geophysical Union
,
Washington, DC.
39.
Horjen
,
I.
, and
Vefsnmo
,
S.
,
1985
, “
A Kinematic and Thermodynamic Analysis of Sea Spray (in Norwegian), Offshore Icing—Phase II. Norwegian Hydrodynamic Laboratory (NHI). Report STF60 F85014
”.
40.
Andreas
,
E. L.
,
1990
, “
Time Constants for the Evolution of sea Spray Droplets
,”
Tellus B
,
42
(
5
), pp.
481
497
.
41.
Ryerson
,
C. C.
,
1995
, “
Superstructure Spray and Ice Accretion on a Large U.S. Coast Guard Cutter
,”
Atmos. Res.
,
36
(
3–4
), pp.
321
337
.
42.
Bodaghkhani
,
A.
,
Dehghani
,
S.-R.
,
Muzychka
,
Y. S.
, and
Colbourne
,
B.
,
2016
, “
Understanding Spray Cloud Formation by Wave Impact on Marine Objects
,”
Cold Reg. Sci. Technol.
,
129
, pp.
114
136
.
43.
Jorgensen
,
T.
,
1982
, “
Influence of Ice Accretion on Activity in the Northern Part of the Norwegian Continental Shelf
,” Report No. STF88F82016,
Offshore Testing and Research Group
,
Trondheim, Norway
.
44.
Stallabrass
,
J.
,
1975
, “Icing of Fishing Vessels in Canadian Waters,”
DME/NAE Quarterly Bull.
,
1975 (1) (1975)
Ottawa, Canada
.
45.
Lock
,
G. S. H.
,
1990
,
The Growth and Decay of Ice
,
Cambridge University Press
,
Cambridge, UK
.
46.
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2016
, “
Droplet Size and Velocity Distributions of Wave-Impact Sea Spray Over a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
132
, pp.
60
67
.
47.
Dehghani-Sanij
,
A. R.
,
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Sea Spray Icing Phenomena on Marine Vessels and Offshore Structures: Review and Formulation
,”
Ocean Eng.
,
132
, pp.
25
39
.
48.
Borisenkov
,
Y.
, and
Panov
,
V.
,
1972
, “
Basic Results and Prospects of Research on Hydrometeorological Conditions of Sihpboard Icing
,”
Issled. Fiz. Prin Obledeneniya Sudov. Leningr. (1972), CRREL Draft Transl. TL411, 1974
.
49.
Kulyakhtin
,
A.
,
Kollar
,
L. E.
,
Løset
,
S.
, and
Farzaneh
,
M.
,
2012
, “
Numerical Simulations of 3D Spray Flow in a Wind Tunnel With Application of O’Rourke’s Interaction Algorithm and Its Validation
,”
Proceedings of the 21st IAHR International Symposium on Ice.
50.
Breuer
,
M.
,
Jovičić
,
N.
, and
Mazaev
,
K.
,
2003
, “
Comparison of DES, RANS and LES for the Separated Flow Around a Flat Plate at High Incidence
,”
Int. J. Numer. Methods Fluids
,
41
(
4
), pp.
357
388
.
51.
Fröhlich
,
J.
, and
von Terzi
,
D.
,
2008
, “
Hybrid LES/RANS Methods for the Simulation of Turbulent Flows
,”
Prog. Aerosp. Sci.
,
44
(
5
), pp.
349
377
.
52.
Dehghani
,
S. R.
,
Saidi
,
M. H.
,
Mozafari
,
A. A.
, and
Ghafourian
,
A.
,
2009
, “
Particle Trajectory in a Bidirectional Vortex Flow
,”
Part. Sci. Technol.
,
27
(
1
), pp.
16
34
.
53.
Dehghani
,
S. R.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2016
, “
Droplet Trajectories of Wave-Impact sea Spray on a Marine Vessel
,”
Cold Reg. Sci. Technol.
,
127
, pp.
1
9
.
54.
Lee
,
C. H.
, and
Reitz
,
R. D.
,
2000
, “
An Experimental Study of the Effect of Gas Density on the Distortion and Breakup Mechanism of Drops in High Speed Gas Stream
,”
Int. J. Multiph. Flow
,
26
(
2
), pp.
229
244
.
55.
O’Rourke
,
P. J.
,
1981
,
Collective Drop Effects on Vaporizing Liquid Sprays
,
Los Alamos National Lab.
,
Los Alamos, NM
.
56.
Kollár
,
L. E.
, and
Farzaneh
,
M.
,
2007
, “
Modeling the Evolution of Droplet Size Distribution in two-Phase Flows
,”
Int. J. Multiph. Flow
,
33
(
11
), pp.
1255
1270
.
57.
Makkonen
,
L.
,
2000
, “
Models for the Growth of Rime, Glaze, Icicles and wet Snow on Structures
,”
Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
,
358
(
1776
), pp.
2913
2939
.
58.
Finstad
,
K. J.
,
Lozowski
,
E. P.
, and
Gates
,
E. M.
,
1988
, “
A Computational Investigation of Water Droplet Trajectories
,”
J. Atmos. Ocean. Technol.
,
5
(
1
), pp.
160
170
.
59.
Gao
,
W.
,
Smith
,
D. W.
, and
Sego
,
D. C.
,
2000
, “
Freezing Temperatures of Freely Falling Industrial Wastewater Droplets
,”
J. Cold Reg. Eng.
,
14
(
3
), pp.
101
118
.
60.
Stallabrass
,
J.
, and
Hearty
,
P.
,
1967
, The Icing of Cylinders in Conditions of Simulated Freezing Sea Spray.
61.
Dehghani-Sanij
,
A.
,
Muzychka
,
Y. S.
, and
Naterer
,
G. F.
,
2016
, “
Predicted Ice Accretion on Horizontal Surfaces of Marine Vessels and Offshore Structures in Arctic Regions
,”
Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
, pp.
1
9
.
62.
Makkonen
,
L.
,
1987
, “
Salinity and Growth Rate of ice Formed by sea Spray
,”
Cold Reg. Sci. Technol.
,
14
(
2
), pp.
163
171
.
63.
Schwerdtfeger
,
P.
,
1964
, “
The Effect of Finite Heat Content and Thermal Diffusion on the Growth of a Sea-Ice Cover
,”
J. Glaciol.
,
5
(
39
), pp.
315
324
.
64.
Kulyakhtin
,
A.
,
Kulyakhtin
,
S.
, and
Løset
,
S.
,
2016
, “
The Role of the ice Heat Conduction in the ice Growth Caused by Periodic sea Spray
,”
Cold Reg. Sci. Technol.
,
127
, pp.
93
108
.
65.
Makkonen
,
L.
,
2010
, “
Solid Fraction in Dendritic Solidification of a Liquid
,”
Appl. Phys. Lett.
,
96
(
9
), p.
091910
.
66.
Blackmore
,
R. Z.
,
Makkonen
,
L.
, and
Lozowski
,
E. P.
,
2002
, “
A new Model of Spongy Icing From First Principles
,”
J. Geophys. Res. Atmos.
,
107
(
D21
), pp.
AAC 9-1
AAC 9-15
.
67.
Wettlaufer
,
J. S.
,
Worster
,
M. G.
, and
Huppert
,
H. E.
,
1997
, “
The Phase Evolution of Young Sea Ice
,”
Geophys. Res. Lett.
,
24
(
10
), pp.
1251
1254
.
68.
Schremb
,
M.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2018
, “
Normal Impact of Supercooled Water Drops Onto a Smooth ice Surface: Experiments and Modelling
,”
J. Fluid Mech.
,
835
, pp.
1087
1107
.
69.
Wilbur
,
G.
,
MacMillan
,
B.
,
Bade
,
K. M.
, and
Mastikhin
,
I.
,
2020
, “
MRI Monitoring of sea Spray Freezing
,”
J. Magn. Reson.
,
310
, p.
106647
.
70.
Jones
,
K. F.
, and
Andreas
,
E. L.
,
2012
, “
Sea Spray Concentrations and the Icing of Fixed Offshore Structures
,”
Q. J. R. Meteorol. Soc.
,
138
(
662
), pp.
131
144
.
71.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
Boston, MA
.
72.
Jørgensen
,
T. S.
,
1985
,
Sea Spray Characteristics on a Semi-Submersible Drilling Rig—STF60 F 85015
.
73.
Horjen
,
I.
,
Loeset
,
S.
, and
Vefsnmo
,
S.
,
1986
,
Icing Hazards on Supply Vessels and Stand-by Boats—STF60 A86073’
.
74.
Muzik
,
I.
, and
Kirby
,
A.
,
1992
, “
Spray Overtopping Rates for Tarsiut Island: Model and Field Study Results
,”
Can. J. Civ. Eng.
,
19
(
3
), pp.
469
477
.
75.
Borisenkov
,
V. V.
,
Zablockiy
,
Y. P.
,
Makshtas
,
G. A.
,
Migulin
,
A. P.
, and
Panov
,
A. I.
,
1975
,
On the Approximation of the Spray-Cloud Dimensions (In Russian). Arkticheskii I Antarkticheskii Nauchno-Issledovatelskii Institut
.
76.
Børs
,
H. E. B.
,
Løset
,
S.
,
Iden
,
K.
,
Reistad
,
M.
,
Harstveit
,
K.
, and
Nygård
,
B.
,
2009
,
Goliat Environmental/Icing Evaluation Study. 25/08
.
77.
Anandharamakrishnan
,
C.
,
Gimbun
,
J.
,
Stapley
,
A. G. F.
, and
Rielly
,
C. D.
,
2009
, “
Application of Computational Fluid Dynamics (CFD) Simulations to Spray-Freezing Operations
,”
Dry. Technol.
,
28
(
1
), pp.
94
102
.
78.
Villeneuve
,
E.
,
Harvey
,
D.
,
Zimcik
,
D.
,
Aubert
,
R.
, and
Perron
,
J.
,
2015
, “
Piezoelectric Deicing System for Rotorcraft
,”
J. Am. Helicopter Soc.
,
60
(
4
), pp.
1
12
.
79.
Kulinich
,
S. A.
, and
Farzaneh
,
M.
,
2009
, “
Ice Adhesion on Super-Hydrophobic Surfaces
,”
Appl. Surf. Sci.
,
255
(
18
), pp.
8153
8157
.
80.
Ulstein Group
, “
X-Bow
,”
2020
,
Online, Available
: https://ulstein.com/innovations/x-bow,
Accessed February 19, 2020
.
81.
Guest
,
P.
, and
Luke
,
R.
,
2005
,
Mariners Weather Log, Vol. 49, No. 3, National Oceanic and Atmospheric Administration, U.S. Department of Commerce
, https://www.vos.noaa.gov/MWL/dec_05/ves.shtml,
Accessed September 7, 2020
.
You do not currently have access to this content.