Abstract

The present work proposes a novel structural configuration for floating wind farms after an investigation into the structural configurations of current floating wind farms. The uniqueness of the structural configuration lies in the ability to adjust its heading to wind inflow directions, i.e., the self-adaptive property. To verify the existence of the self-adaptive property, a structural design is performed, and a quasi-static framework to analyze the responses is established. To simplify the loads on wind turbines under yawed inflow conditions, empirical expressions for wind loads are proposed, based on which the quasi-static analysis is performed under the yawed inflow direction of 90 deg from the structural heading. The analytical result indicates that under yawed inflow conditions, the structural heading will eventually turn to align with the wind inflow direction on account of the structural configuration and the wind turbine control. Then, the effects of inflow wind velocity, initial offset, number of wind turbines, complex environmental conditions, and hydroelastic properties on the responses of the structure are investigated.

References

1.
Yaramasu
,
V.
,
Wu
,
B.
,
Sen
,
P. C.
,
Kouro
,
S.
, and
Narimani
,
M.
,
2015
, “
High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies
,”
Proc. IEEE
,
103
(
5
), pp.
740
788
. 10.1109/JPROC.2014.2378692
2.
Leung
,
D. Y. C.
, and
Yang
,
Y.
,
2012
, “
Wind Energy Development and Its Environmental Impact: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
1031
1039
. 10.1016/j.rser.2011.09.024
3.
Esteban
,
M.
, and
Leary
,
D.
,
2012
, “
Current Developments and Future Prospects of Offshore Wind and Ocean Energy
,”
Appl. Energy
,
90
(
1
), pp.
128
136
. 10.1016/j.apenergy.2011.06.011
4.
Walter
,
M.
,
Philipp
,
B.
,
Spitsen
,
P.
,
Nunemake
,
J.
, and
Gevorgian
,
V.
,
2018
, 2018
Offshore Wind Technologies Market Report
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
5.
Bosch
,
J.
,
Staffell
,
I.
, and
Hawkes
,
A. D.
,
2019
, “
Global Levelised Cost of Electricity From Offshore Wind
,”
Energy
,
189
, p.
116357
. 10.1016/j.energy.2019.116357
6.
Wang
,
C. M.
,
Utsunomiya
,
T.
,
Wee
,
S. C.
, and
Choo
,
Y. S.
,
2010
, “
Research on Floating Wind Turbines: A Literature Survey
,”
IES J. Part A Civ. Struct. Eng.
,
3
(
4
), pp.
267
277
. 10.1080/19373260.2010.517395
7.
Patel
,
M. R.
,
2005
,
Wind and Solar Power Systems: Design, Analysis, and Operation
,
CRC Press
,
Boca Raton, FL
.
8.
Vold
,
O.
,
Hakon
,
G.
,
Guttormsen
,
T.
, and
Delp
,
L.
,
2017
,
Hywind Scotland Pilot Park Project Plan for Construction Activities 2017
, http://marine.gov.scot/sites/default/files/00516548.pdf
9.
Nilsson
,
K.
,
Ivanell
,
S.
,
Hansen
,
K. S.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Breton
,
S.-P.
, and
Henningson
,
D.
,
2015
, “
Large-Eddy Simulations of the Lillgrund Wind Farm
,”
Wind Energy
,
18
(
3
), pp.
449
467
. 10.1002/we.1707
10.
Haces-Fernandez
,
F.
,
Li
,
H.
, and
Ramirez
,
D.
,
2019
, “
Improving Wind Farm Power Output Through Deactivating Selected Wind Turbines
,”
Energy Convers. Manage.
,
187
(December 2018), pp.
407
422
. 10.1016/j.enconman.2019.03.028
11.
Fleming
,
P. A.
,
Gebraad
,
P. M. O.
,
Lee
,
S.
,
van Wingerden
,
J. W.
,
Johnson
,
K.
,
Churchfield
,
M.
,
Michalakes
,
J.
,
Spalart
,
P.
, and
Moriarty
,
P.
,
2014
, “
Evaluating Techniques for Redirecting Turbine Wakes Using SOWFA
,”
Renewable Energy
,
70
, pp.
211
218
. 10.1016/j.renene.2014.02.015
12.
Borisade
,
F.
,
Choisnet
,
T.
, and
Cheng
,
P. W.
,
2016
, “
Design Study and Full Scale MBS-CFD Simulation of the IDEOL Floating Offshore Wind Turbine Foundation
,”
J. Phys. Conf. Ser.
,
753
(
9
), pp.
1
9
. 10.1088/1742-6596/753/9/092002
13.
Rodrigues
,
S. F.
,
Teixeira Pinto
,
R.
,
Soleimanzadeh
,
M.
,
Bosman
,
P. A. N.
, and
Bauer
,
P.
,
2015
, “
Wake Losses Optimization of Offshore Wind Farms With Moveable Floating Wind Turbines
,”
Energy Convers. Manage.
,
89
, pp.
933
941
. 10.1016/j.enconman.2014.11.005
14.
Nilsson
,
A.
, and
Englund
,
K.
,
2015
,
Multiple Use of a Floating Offshore Wind Energy Platform—A Case Study on the Hexicon Concept
,
KTH Royal Institute of Technology
.
15.
Gelotte
,
L.
, and
Nilsson
,
A. L.
,
2017
,
Optimal Placement of Floating Two-Turbine Foundations in Offshore Wind Farms
,
KTH Royal Institute of Technology
.
16.
Ai
,
P.
,
2016
,
Design and Hydrodynamic Analysis of a Semi-submersible With Two 5WM Wind Turbines
,
Norwegian University of Science and Technology
.
17.
Manabe
,
H.
,
Uehiro
,
T.
,
Utiyama
,
M.
,
Esaki
,
H.
,
Kinoshita
,
T.
,
Takagi
,
K.
,
Okamura
,
H.
, and
Satou
,
M.
,
2008
, “
Development of the floating structure for the Sailingtype Offshore Wind Farm
,”
OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean
,
Kobe, Japan
,
Apr. 8–11
, pp.
1
4
.
18.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean Eng.
,
109
, pp.
677
690
. 10.1016/j.oceaneng.2015.09.012
19.
Suzuki
,
H.
,
2005
, “
Overview of Megafloat: Concept, Design Criteria, Analysis, and Design
,”
Mar. Struct.
,
18
(
2
), pp.
111
132
. 10.1016/j.marstruc.2005.07.006
20.
Mcallister
,
K. R.
,
1997
, “
Mobile Offshore Bases—An Overview of Recent Research
,”
Mar. Sci. Technol.
,
2
(
3
), pp.
173
181
. 10.1007/BF02489808
21.
MOB Project Team
,
2000
,
Mobile Offshore Base (MOB) Science and Technology Program-Final Report
,
Naval Facilities Engineering Service Center 1100 23rd Avenue Port Hueneme, CA 93043
.
22.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
23.
Robertson
,
A.
,
Jonkman
,
J.
,
Masciola
,
M.
,
Song
,
H.
,
Goupee
,
A.
,
Coulling
,
A.
, and
Luan
,
C.
,
2014
,
Definition of the Semisubmersible Floating System for Phase II of OC4
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
24.
Vermeer
,
L. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
. 10.1016/S0376-0421(03)00078-2
25.
Santos
,
F. P.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2015
, “Review of Wind Turbine Accident and Failure Data,”
Renewable Energies Offshore
,
C.
Guedes Soares
, ed.,
Taylor & Francis Group
,
London
, pp.
953
959
.
26.
Hall
,
R. A.
,
Etheridge
,
C. O.
,
Poranski
,
P. F.
,
Boatman
,
L. T.
, and
Kawase
,
M.
,
1994
, “
Installation, Testing, And Commissioning Of A Disconnectable Turret Mooring For FSOU Vessel in a Typhoon-Prone Area
,”
Offshore Technology Conference.
,
Houston, TX
,
May
.
27.
J, S. T., and C, B. P.
,
2020
,
2018 Cost of Wind Energy Review
,
National Renewable Energy Lab (NREL)
,
Golden, CO
.
28.
Gonzalez-Rodriguez
,
A. G.
,
2017
, “
Review of Offshore Wind Farm Cost Components
,”
Energy Sustainable Dev.
,
37
, pp.
10
19
. 10.1016/j.esd.2016.12.001
29.
Maienza
,
C.
,
Avossa
,
A. M.
,
Ricciardelli
,
F.
,
Coiro
,
D.
,
Troise
,
G.
, and
Georgakis
,
C. T.
,
2020
, “
A Life Cycle Cost Model for Floating Offshore Wind Farms
,”
Appl. Energy
,
266
(October 2019), p.
114716
. 10.1016/j.apenergy.2020.114716
30.
Pérez-Collazo
,
C.
,
Greaves
,
D.
, and
Iglesias
,
G.
,
2015
, “
A Review of Combined Wave and Offshore Wind Energy
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
141
153
. 10.1016/j.rser.2014.09.032
31.
Hu
,
J.
,
Zhou
,
B.
,
Vogel
,
C.
,
Liu
,
P.
,
Willden
,
R.
,
Sun
,
K.
,
Zang
,
J.
,
Geng
,
J.
,
Jin
,
P.
,
Cui
,
L.
,
Jiang
,
B.
, and
Collu
,
M.
,
2020
, “
Optimal Design and Performance Analysis of a Hybrid System Combing a Floating Wind Platform and Wave Energy Converters
,”
Appl. Energy
,
269
(January), p.
114998
. 10.1016/j.apenergy.2020.114998
32.
Cheng
,
Z.
,
Wen
,
T. R.
,
Ong
,
M. C.
, and
Wang
,
K.
,
2019
, “
Power Performance and Dynamic Responses of a Combined Floating Vertical Axis Wind Turbine and Wave Energy Converter Concept
,”
Energy
,
171
, pp.
190
204
. 10.1016/j.energy.2018.12.157
33.
Zhou
,
W.
,
Lou
,
C.
,
Li
,
Z.
,
Lu
,
L.
, and
Yang
,
H.
,
2010
, “
Current Status of Research on Optimum Sizing of Stand-Alone Hybrid Solar-Wind Power Generation Systems
,”
Appl. Energy
,
87
(
2
), pp.
380
389
. 10.1016/j.apenergy.2009.08.012
34.
Zhang
,
H.
,
Xu
,
D.
,
Zhao
,
H.
,
Xia
,
S.
, and
Wu
,
Y.
,
2018
, “
Energy Extraction of Wave Energy Converters Embedded in a Very Large Modularized Floating Platform
,”
Energy
,
158
(
June
), pp.
317
329
. 10.1016/j.energy.2018.06.031
35.
Astariz
,
S.
, and
Iglesias
,
G.
,
2015
, “
Enhancing Wave Energy Competitiveness Through Co-located Wind and Wave Energy Farms. A Review on the Shadow Effect
,”
Energies
,
8
(
7
), pp.
7344
7366
. 10.3390/en8077344
36.
Astariz
,
S.
, and
Iglesias
,
G.
,
2016
, “
Co-located Wind and Wave Energy Farms: Uniformly Distributed Arrays
,”
Energy
,
113
, pp.
497
508
. 10.1016/j.energy.2016.07.069
37.
Yang
,
Y.
,
Bashir
,
M.
,
Michailides
,
C.
,
Li
,
C.
, and
Wang
,
J.
,
2020
, “
Development and Application of an Aero-hydro-servo-elastic Coupling Framework for Analysis of Floating Offshore Wind Turbines
,”
Renewable Energy
,
161
, pp.
606
625
. 10.1016/j.renene.2020.07.134
38.
Yang
,
Y.
,
Bashir
,
M.
,
Wang
,
J.
,
Yu
,
J.
, and
Li
,
C.
,
2020
, “
Performance Evaluation of an Integrated Floating Energy System Based on Coupled Analysis
,”
Energy Convers. Manage.
,
223
(
July
), p.
113308
. 10.1016/j.enconman.2020.113308
39.
Zhang
,
Y.
, and
Liu
,
H.
,
2021
, “
Methodology for the Assessment and Optimization of Connection Parameter Combinations for Modular Floating Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
2
), p.
021301
. 10.1115/1.4047929
40.
Zhang
,
Y.
, and
Liu
,
H.
,
2018
, “
Impact of Connection Properties on Dynamic Response of Modular Floating Structures
,”
ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering.
,
Madrid, Spain
,
June 17–22
, pp.
1
11
.
41.
Vølund
,
P.
,
1992
, “
Loads on a Horizontal Axis Wind Turbine Operating in Wake
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
317
328
. 10.1016/0167-6105(92)90556-P
42.
Thomsen
,
K.
, and
Sørensen
,
P.
,
1999
, “
Fatigue Loads for Wind Turbines Operating in Wakes
,”
J. Wind Eng. Ind. Aerodyn.
,
80
(
1–2
), pp.
121
136
. 10.1016/S0167-6105(98)00194-9
43.
Liu
,
Y.
,
Xiao
,
Q.
,
Incecik
,
A.
,
Peyrard
,
C.
, and
Wan
,
D.
,
2017
, “
Establishing a Fully Coupled CFD Analysis Tool for Floating Offshore Wind Turbines
,”
Renewable Energy
,
112
, pp.
280
301
. 10.1016/j.renene.2017.04.052
44.
Ma
,
Y.
,
Hu
,
Z. Q.
, and
Xiao
,
L. F.
,
2015
, “
Wind-Wave Induced Dynamic Response Analysis for Motions and Mooring Loads of a Spar-Type Offshore Floating Wind Turbine
,”
J. Hydrodyn.
,
26
(
6
), pp.
865
874
. 10.1016/S1001-6058(14)60095-0
45.
Cordle
,
A.
, and
Jonkman
,
J.
,
2011
, “
State of the Art in Floating Wind Turbine Design Tools
,”
Proceedings of International Offshore Polar Engineering Conference
,
Maui, HI
,
June 19–24
, pp.
367
374
.
46.
Barooni
,
M.
,
Ale Ali
,
N.
, and
Ashuri
,
T.
,
2018
, “
An Open-Source Comprehensive Numerical Model for Dynamic Response and Loads Analysis of Floating Offshore Wind Turbines
,”
Energy
,
154
, pp.
442
454
. 10.1016/j.energy.2018.04.163
47.
ANSYS Inc.
,
2016
,
AQWA Theory Manual
.
48.
Lee
,
C.-H.
, and
Newman
,
J. N.
,
2000
, “
An Assessment of Hydroelasticity for Very Large Hinged Vessels
,”
J. Fluids Struct.
,
14
(
7
), pp.
957
970
. 10.1006/jfls.2000.0305
49.
Riggs
,
H. R.
,
Ertekin
,
R. C.
, and
Mills
,
T. R. J.
,
2000
, “
Comparative Study of RMFC and FEA Models for the Wave-Induced Response of a MOB
,”
Mar. Struct.
,
13
(
4–5
), pp.
217
232
. 10.1016/S0951-8339(00)00029-0
50.
Shi
,
Q. J.
,
Xu
,
D.
,
Zhang
,
H.
,
Zhao
,
H.
, and
Wu
,
Y.
,
2018
, “
Optimized Stiffness Combination of a Flexible-Base Hinged Connector for Very Large Floating Structures
,”
Mar. Struct.
,
60
(
March
), pp.
151
164
. 10.1016/j.marstruc.2018.03.014
51.
Zhang
,
X.
,
Zheng
,
S.
,
Lu
,
D.
, and
Tian
,
X.
,
2019
, “
Numerical Investigation of the Dynamic Response and Power Capture Performance of a VLFS With a Wave Energy Conversion Unit
,”
Eng. Struct.
,
195
(
May
), pp.
62
83
. 10.1016/j.engstruct.2019.05.077
You do not currently have access to this content.