Abstract

Unbonded flexible pipes are widely utilized in the exploitation of offshore oil and gas resources. They are connected to two of the most critical types of system: floating production platforms and underwater production systems. However, if some tensile armor wires are substituted by cables or broken, the tensile armor layer will be incomplete, which seriously reduces the safety and reliability of the flexible pipe. In the present study, models of a flexible pipe with a complete tensile layer and with the tensile layer partially missing were established. The error for the tensile stiffness obtained by the finite element model of an intact flexible pipe was only 1% compared with experimental results. Because the load borne by the inner tensile armor layer is larger under tension than that borne by the outer tensile armor layer, the loss of inner tensile armor wires has a greater impact on the tensile properties. The maximum axial elongation of the flexible pipe increases with the number of missing inner tensile armor wires as a cubic polynomial. If the distribution of the missing armor wires is too dense, a stress concentration and local bending may occur, which will reduce the tensile strength of the flexible pipe.

References

References
1.
Sævik
,
S.
,
2011
, “
Theoretical and Experimental Studies of Stresses in Flexible Pipes
,”
Comput. Struct.
,
89
(
23–24
), pp.
2273
2291
. 10.1016/j.compstruc.2011.08.008
2.
Vaz
,
M. A.
, and
Rizzo
,
N. A. S.
,
2011
, “
A Finite Element Model for Flexible Pipe Armor Wire Instability
,”
Mar. Struct.
,
24
(
3
), pp.
275
291
. 10.1016/j.marstruc.2011.03.001
3.
API RP 17B
,
2007
,
Recommended Practice for Flexible Pipe
,
American Petroleum Institute
,
Washington
.
4.
Clarke
,
T.
,
Jacques
,
R.
,
Bisognin
,
A.
,
Camerini
,
C.
,
Damasceno
,
S.
, and
Strohaecker
,
S.
,
2011
, “
Monitoring the Structural Integrity of a Flexible Pipe During a Full-Scale Fatigue Test
,”
Eng. Struct.
,
33
(
4
), pp.
1181
1186
. 10.1016/j.engstruct.2010.12.039
5.
Anderson
,
K.
,
Macleod
,
I.
, and
O’Keeffe
,
B.
,
2007
, “
In-Service Repair of Flexible Pipe Damage Experience With the North Sea Galley Field
,”
ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
,
San Diego, CA
,
June 10–15
, pp.
355
362
.
6.
Costello
,
G. A.
,
1990
,
Theory of Wire Rope
,
Springer
,
New York
.
7.
Hruska
,
F. H.
,
1951
, “
Calculation of Stresses in Wire Rope
,”
Wire Prod.
,
26
(
9
), pp.
799
801
.
8.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torsional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
205
227
. 10.1016/0951-8339(92)90029-O
9.
McIver
,
D. B.
,
1995
, “
A Method of Modelling the Detailed Component and Overall Structural Behaviour of Flexible Pipe Sections
,”
Eng. Struct.
,
17
(
4
), pp.
254
266
. 10.1016/0141-0296(95)00024-2
10.
Custodio
,
A. B.
, and
Vaz
,
M. A.
,
2002
, “
A Nonlinear Formulation for the Axisymmetric Response of Umbilical Cables and Flexible Pipes
,”
Appl. Ocean Res.
,
24
(
1
), pp.
21
29
. 10.1016/S0141-1187(02)00007-X
11.
Yue
,
Q.
,
Lu
,
Q.
,
Yan
,
J.
,
Zheng
,
J.
, and
Palmer
,
A.
,
2013
, “
Tension Behavior Prediction of Flexible Pipelines in Shallow Water
,”
Ocean Eng.
,
58
(
2
), pp.
201
207
. 10.1016/j.oceaneng.2012.11.002
12.
Gay Neto
,
A.
,
Martins
,
C. A.
,
Pesce
,
C. P.
,
Meirelles
,
C. O.
,
Malta
,
E. R.
,
Neto
,
T. F. B.
, and
Godinho
,
C. A. F.
,
2013
, “
Prediction of Burst in Flexible Pipes
,”
ASME J. Offshore Mech. Arct.
,
135
(
1
), p.
011401
. 10.1115/1.4007046
13.
Alfano
,
G.
,
Bahtui
,
A.
, and
Bahai
,
H.
,
2009
, “
Numerical Derivation of Constitutive Models for Unbonded Flexible Pipes
,”
Int. J. Mech. Sci.
,
51
(
4
), pp.
295
304
. 10.1016/j.ijmecsci.2009.02.002
14.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2008
, “
A Finite Element Analysis for Unbonded Flexible Pipes Under Axial Tension
,”
27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
1
6
.
15.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2008
, “
A Finite Element Analysis for Unbonded Flexible Pipes Under Torsion
,”
ASME J. Offshore Mech. Arct.
,
130
(
4
), pp.
169
173
. 10.1115/1.2948956
16.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2009
, “
Numerical and Analytical Modeling of Unbonded Flexible Pipes
,”
ASME J. Offshore Mech. Arct.
,
131
(
2
), p.
021401
. 10.1115/1.3058700
17.
Malta
,
E. R.
, and
de Arruda Martins
,
C.
,
2017
, “
Finite Element Analysis of Flexible Pipes Under Axial Compression: Influence of the Sample Length
,”
ASME J. Offshore Mech. Arct.
,
139
(
1
), p.
011701
. 10.1115/1.4034379
18.
Ren
,
S.
,
Xue
,
H.
, and
Tang
,
W.
,
2016
, “
Analytical and Numerical Models to Predict the Behavior of Unbonded Flexible Risers Under Torsion
,”
China Ocean Eng.
,
30
(
2
), pp.
243
256
. 10.1007/s13344-016-0015-9
19.
Ebrahimi
,
A.
,
Kenny
,
S.
, and
Hussein
,
A.
,
2018
, “
Finite Element Investigation on the Tensile Armour Wire Response of Flexible Pipe for Axisymmetric Loading Conditions Using an Implicit Solver
,”
ASME J. Offshore Mech. Arct.
,
140
(
4
), p.
041402
. 10.1115/1.4039132
20.
Munoz
,
H. E. M.
,
Sousa
,
J. R. M. D.
,
Magluta
,
C.
, and
Roitman
,
N.
,
2016
, “
Improvements on the Numerical Analysis of the Coupled Extensional-Torsional Response of a Flexible Pipe
,”
ASME J. Offshore Mech. Arct.
,
138
(
1
), p.
011701
. 10.1115/1.4032036
21.
Merino
,
H. E. M.
,
de Sousa
,
J. R. M. D.
,
Magluta
,
C.
, and
Roitman
,
N.
,
2010
, “
Numerical and Experimental Study of a Flexible Pipe Under Torsion
,”
ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
,
Shanghai, China
,
Dec. 22
, pp.
911
922
.
22.
de Sousa
,
J. R. M.
,
Campello
,
G. C.
,
Kwietniewski
,
C. E. F.
,
Ellwanger
,
G. B.
, and
Strohaecker
,
T. R.
,
2014
, “
Structural Response of a Flexible Pipe With Damaged Tensile Armor Wires Under Pure Tension
,”
Mar. Struct.
,
39
, pp.
1
38
. 10.1016/j.marstruc.2014.06.002
23.
de Sousa
,
J. R. M.
,
Magluta
,
C.
,
Roitman
,
N.
,
Ellwanger
,
G. B.
, and
Lima
,
E. C. P.
,
2009
, “
On the Response of Flexible Pipes to Loads Imposed by Hydraulic Collars
,”
Appl. Ocean Res.
,
31
(
3
), pp.
157
170
. 10.1016/j.apor.2009.07.005
24.
Martins
,
C. A.
,
Pesce
,
C. P.
, and
Aranha
,
J. A. P.
,
2009
, “
Structural Behavior of Flexible Pipe Carcass During Launching
,”
22nd International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2009) v.2: Safety and Reliability Pipeline Technology
,
Cancun, Mexico
,
Jan. 23
, pp.
537
546
.
25.
Gay Neto
,
A.
, and
Martins
,
C. A.
,
2009
, “
A Comparative Wet Collapse Buckling Study for the Carcass Layer of Flexible Pipes
,”
ASME J. Offshore Mech. Arct.
,
134
(
3
), p.
031701
. 10.1115/1.4005185
26.
Witz
,
J. A.
,
1996
, “
A Case Study in the Cross-Section Analysis of Flexible Pipes
,”
Mar. Struct.
,
9
(
9
), pp.
885
904
. 10.1016/0951-8339(95)00035-6
27.
Zhu
,
X.
, and
Lei
,
Q.
,
2019
, “
Effect of Axial Compression and Wet Collapse Loads on Torsional Response of Flexible Pipe
,”
Arabian J. Sci. Eng.
,
44
(
12
), pp.
10397
10408
. 10.1007/s13369-019-04075-3
28.
McNamara
,
J. F.
, and
Harte
,
A. M.
,
1992
, “
Three-Dimensional Analytical Simulation of Flexible Pipe Wall Structure
,”
ASME J. Offshore Mech. Arct.
,
114
(
2
), pp.
69
75
. 10.1115/1.2919961
You do not currently have access to this content.