Abstract

Numerous numerical and experimental investigations show that rogue waves present much larger probabilities of occurrence than predicted by the linear random wave model, i.e., Gaussian distributed waves. The deviation from normal statistical events excites a continuous concern about rogue wave research. In this study, rogue waves under long-crested and narrow-banded wave trains are checked using the high-order spectral (HOS)-NST model. The JONSWAP wave spectra with random phases are selected as the initial state of the incoming wave trains. Different values of spectral parameters are chosen to reproduce different random sea states with different Benjamin–Feir index (BFI). Numerical results are compared with the classical experimental study and show good agreements. Statistical properties of rogue waves are recounted again within the analysis of exceedance distribution function (EDF) of wave heights and wave crests. Spectral changes are examined, and the monotonic increases with BFI are stressed. However, no bifurcations are observed for BFI near 1. For large BFI, quasi-resonance interactions dominate the wave nonlinearities, and the resulted dynamic excess kurtosis involves initially monotonic enhancement along with space, peaking at around 20–30 wavelengths, but stays at stably high-level values. The quasi-steady-state of dynamic excess kurtosis after full interaction of wave nonlinearities in time and space demonstrates a continuous emergence of rogue waves much more frequent than normality. The changes of excess kurtosis along x are complicated where BFI near 1 and the occurrence of rogue waves might be enhanced even for BFI slightly inferior to 1.

References

1.
Dysthe
,
K.
,
Krogstad
,
H. E.
, and
Müller
,
P.
,
2008
, “
Oceanic Rogue Waves
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
287
310
. 10.1146/annurev.fluid.40.111406.102203
2.
Müller
,
P. E. T. E. R.
,
Garrett
,
C.
, and
Osborne
,
A.
,
2005
, “
Meeting Report: Rogue Waves—The Fourteenth ‘Aha Huliko’a Hawaiian Winter Workshop
,”
Oceanography
,
18
(
3
), pp.
66
75
. 10.5670/oceanog.2005.30
3.
Onorato
,
M.
,
Residori
,
S.
,
Bortolozzo
,
U.
,
Montina
,
A.
, and
Arecchi
,
F. T.
,
2013
, “
Rogue Waves and Their Generating Mechanisms in Different Physical Contexts
,”
Phys. Rep.-Rev. Sect. Phys. Lett.
,
528
(
2
), pp.
47
89
. 10.1016/j.physrep.2013.03.001
4.
Draper
,
L.
,
1966
, “
'Freak’ Ocean Waves
,”
Weather
,
21
(
1
), pp.
2
4
. 10.1002/j.1477-8696.1966.tb05176.x
5.
Solli
,
D. R.
,
Ropers
,
C.
,
Koonath
,
P.
, and
Jalali
,
B.
,
2007
, “
Optical Rogue Waves
,”
Nature
,
450
(
7172
), pp.
1054
1057
. 10.1038/nature06402
6.
El Koussaifi
,
R.
,
Tikan
,
A.
,
Toffoli
,
A.
,
Randoux
,
S.
,
Suret
,
P.
, and
Onorato
,
M.
,
2018
, “
Spontaneous Emergence of Rogue Waves in Partially Coherent Waves: A Quantitative Experimental Comparison Between Hydrodynamics and Optics
,”
Phys. Rev. E
,
97
(
1
), p.
10
. 10.1103/PhysRevE.97.012208
7.
Dudley
,
J. M.
,
Genty
,
G.
,
Mussot
,
A.
,
Chabchoub
,
A.
, and
Dias
,
F.
,
2019
, “
Rogue Waves and Analogies in Optics and Oceanography
,”
Nat. Rev. Phys.
,
1
(
11
), pp.
675
689
. 10.1038/s42254-019-0100-0
8.
Zhao
,
L. C.
,
Yang
,
Z. Y.
, and
Yang
,
W. L.
,
2019
, “
Solitons in Nonlinear Systems and Eigen-States in Quantum Wells
,”
Chin. Phys. B
,
28
(
1
), p.
10
. 10.1088/1674-1056/28/1/010501
9.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
2009
, “Rogue Waves in the Ocean,”
Advances in Geophysical and Environmental Mechanics and Mathematics
,
H
Kolumban
, ed.,
Springer
,
Berlin, Heidelberg
. https://link.springer.com/book/10.1007/978-3-540-88419-4
10.
Zakharov
,
V. E.
, and
Ostrovsky
,
L. A.
,
2009
, “
Modulation Instability: The Beginning
,”
Phys. D-Nonlinear Phenom.
,
238
(
5
), pp.
540
548
. 10.1016/j.physd.2008.12.002
11.
Janssen
,
P. A. E. M.
,
2003
, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
,
33
(
4
), pp.
863
884
. 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
12.
Waseda
,
T.
,
Kinoshita
,
T.
, and
Tamura
,
H.
,
2009
, “
Evolution of a Random Directional Wave and Freak Wave Occurrence
,”
J. Phys. Oceanogr.
,
39
(
3
), pp.
621
639
. 10.1175/2008JPO4031.1
13.
Fujimoto
,
W.
,
Waseda
,
T.
, and
Webb
,
A.
,
2019
, “
Impact of the Four-Wave Quasi-Resonance on Freak Wave Shapes in the Ocean
,”
Ocean Dyn.
,
69
(
1
), pp.
101
121
. 10.1007/s10236-018-1234-9
14.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
,
Cavaleri
,
L.
,
Brandini
,
C.
, and
Stansberg
,
C. T.
,
2006
, “
Extreme Waves, Modulational Instability and Second Order Theory: Wave Flume Experiments on Irregular Waves
,”
Eur. J. Mech. B-Fluids
,
25
(
5
), pp.
586
601
. 10.1016/j.euromechflu.2006.01.002
15.
Shemer
,
L.
, and
Sergeeva
,
A.
,
2009
, “
An Experimental Study of Spatial Evolution of Statistical Parameters in a Unidirectional Narrow-Banded Random Wavefield
,”
J. Geophys. Res.-Oceans
,
114
(
C1
), p.
C01015
. 10.1029/2008JC005077
16.
Shemer
,
L.
,
Sergeeva
,
A.
, and
Liberzon
,
D.
,
2010
, “
Effect of the Initial Spectrum on the Spatial Evolution of Statistics of Unidirectional Nonlinear Random Waves
,”
J. Geophys. Res.-Oceans
,
115
(
C12
), p.
C12035
. 10.1029/2010JC006326
17.
Mori
,
N.
, and
Yasuda
,
T.
,
2002
, “
Effects of High-Order Nonlinear Interactions on Unidirectional Wave Trains
,”
Ocean Eng.
,
29
(
10
), pp.
1233
1245
. 10.1016/S0029-8018(01)00074-9
18.
Shemer
,
L.
,
Sergeeva
,
A.
, and
Slunyaev
,
A.
,
2010
, “
Applicability of Envelope Model Equations for Simulation of Narrow-Spectrum Unidirectional Random Wave Field Evolution: Experimental Validation
,”
Phys. Fluids
,
22
(
1
), p.
016601
. 10.1063/1.3290240
19.
Slunyaev
,
A. V.
, and
Sergeeva
,
A. V.
,
2012
, “
Stochastic Simulation of Unidirectional Intense Waves in Deep Water Applied to Rogue Waves
,”
JETP Lett.
,
94
(
10
), pp.
779
786
. 10.1134/S0021364011220103
20.
Toffoli
,
A.
,
Benoit
,
M.
,
Onorato
,
M.
, and
Bitner-Gregersen
,
E. M.
,
2009
, “
The Effect of Third-Order Nonlinearity on Statistical Properties of Random Directional Waves in Finite Depth
,”
Nonlinear Process. Geophys.
,
16
(
1
), pp.
131
139
. 10.5194/npg-16-131-2009
21.
Onorato
,
M.
,
Cavaleri
,
L.
,
Fouques
,
S.
,
Gramstad
,
O.
,
Janssen
,
P.
,
Monbaliu
,
J.
,
Osborne
,
A. R.
,
Pakozdi
,
C.
,
Serio
,
M.
,
Stansberg
,
C. T.
,
Toffoli
,
A.
, and
Trulsen
,
K.
,
2009
, “
Statistical Properties of Mechanically Generated Surface Gravity Waves: A Laboratory Experiment in a Three-Dimensional Wave Basin
,”
J. Fluid Mech.
,
627
(
1
), pp.
235
257
. 10.1017/S002211200900603X
22.
Toffoli
,
A.
,
Gramstad
,
O.
,
Trulsen
,
K.
,
Monbaliu
,
J.
,
Bitner-Gregersen
,
E.
, and
Onorato
,
M.
,
2010
, “
Evolution of Weakly Nonlinear Random Directional Waves: Laboratory Experiments and Numerical Simulations
,”
J. Fluid Mech.
,
664
(
1
), pp.
313
336
. 10.1017/S002211201000385X
23.
Xiao
,
W. T.
,
Liu
,
Y. M.
,
Wu
,
G. Y.
, and
Yue
,
D. K. P.
,
2013
, “
Rogue Wave Occurrence and Dynamics by Direct Simulations of Nonlinear Wave-Field Evolution
,”
J. Fluid Mech.
,
720
(
1
), pp.
357
392
. 10.1017/jfm.2013.37
24.
Christou
,
M.
, and
Ewans
,
K.
,
2014
, “
Field Measurements of Rogue Water Waves
,”
J. Phys. Oceanogr.
,
44
(
9
), pp.
2317
2335
. 10.1175/JPO-D-13-0199.1
25.
Fedele
,
F.
,
Brennan
,
J.
,
de Leon
,
S. P.
,
Dudley
,
J.
, and
Dias
,
F.
,
2016
, “
Real World Ocean Rogue Waves Explained Without the Modulational Instability
,”
Sci. Rep.
,
6
(
1
), p.
11
. 10.1038/srep27715
26.
Benetazzo
,
A.
,
Ardhuin
,
F.
,
Bergamasco
,
F.
,
Cavaleri
,
L.
,
Guimaraes
,
P. V.
,
Schwendeman
,
M.
,
Sclavo
,
M.
,
Thomson
,
J.
, and
Torsello
,
A.
,
2017
, “
On the Shape and Likelihood of Oceanic Rogue Waves
,”
Sci. Rep.
,
7
(
1
), p.
11
. 10.1038/s41598-017-07704-9
27.
Tayfun
,
M. A.
,
2008
, “
Distributions of Envelope and Phase in Wind Waves
,”
J. Phys. Oceanogr.
,
38
(
12
), pp.
2784
2800
. 10.1175/2008JPO4008.1
28.
Osborne
,
A. R.
,
Onorato
,
M.
, and
Serio
,
M.
,
2000
, “
The Nonlinear Dynamics of Rogue Waves and Holes in Deep-Water Gravity Wave Trains
,”
Phys. Lett. A
,
275
(
5–6
), pp.
386
393
. 10.1016/S0375-9601(00)00575-2
29.
Akhmediev
,
N.
,
Ankiewicz
,
A.
, and
Taki
,
M.
,
2009
, “
Waves That Appear From Nowhere and Disappear Without a Trace
,”
Phys. Lett. A
,
373
(
6
), pp.
675
678
. 10.1016/j.physleta.2008.12.036
30.
Shrira
,
V. I.
, and
Geogjaev
,
V. V.
,
2010
, “
What Makes the Peregrine Soliton so Special as a Prototype of Freak Waves?
,”
J. Eng. Math.
,
67
(
1–2
), pp.
11
22
. 10.1007/s10665-009-9347-2
31.
Dysthe
,
K. B.
,
1979
, “
Note on a Modification to the Non-Linear Schrodinger-Equation for Application to Deep-Water Waves
,”
Proc. R. Soc. London Ser. A—Math. Phys. Eng. Sci.
,
369
(
1736
), pp.
105
114
. 10.1098/rspa.1979.0154
32.
Zakharov
,
V. E.
,
1968
, “
Stability of Periodic Waves of Finite Amplitude on the Surface of a Deep Fluid
,”
J. Appl. Mech. Tech. Phys.
,
9
(
2
), pp.
190
194
. 10.1007/BF00913182
33.
Dommermuth
,
D. G.
, and
Yue
,
D. K. P.
,
1987
, “
A High-Order Spectral Method for the Study of Nonlinear Gravity-Waves
,”
J. Fluid Mech.
,
184
(
1
), pp.
267
288
. 10.1017/S002211208700288X
34.
West
,
B. J.
,
Brueckner
,
K. A.
,
Janda
,
R. S.
,
Milder
,
D. M.
, and
Milton
,
R. L.
,
1987
, “
A New Numerical Method for Surface Hydrodynamics
,”
J. Geophys. Res.-Oceans
,
92
(
C11
), pp.
11803
11824
. 10.1029/JC092iC11p11803
35.
Toffoli
,
A.
,
Onorato
,
M.
,
Bitner-Gregersen
,
E.
,
Osborne
,
A. R.
, and
Babanin
,
A. V.
,
2008
, “
Surface Gravity Waves From Direct Numerical Simulations of the Euler Equations: A Comparison With Second-Order Theory
,”
Ocean Eng.
,
35
(
3–4
), pp.
367
379
. 10.1016/j.oceaneng.2007.10.004
36.
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2006
, “
A Fully-Spectral 3D Time-Domain Model for Second-Order Simulation of Wavetank Experiments. Part A: Formulation, Implementation and Numerical Properties
,”
Appl. Ocean Res.
,
28
(
1
), pp.
33
43
. 10.1016/j.apor.2006.05.004
37.
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2006
, “
A Fully-Spectral 3D Time-Domain Model for Second-Order Simulation of Wavetank Experiments. Part B: Validation, Calibration Versus Experiments and Sample Applications
,”
Appl. Ocean Res.
,
28
(
2
), pp.
121
132
. 10.1016/j.apor.2006.05.003
38.
Clamond
,
D.
,
Francius
,
M.
,
Grue
,
J.
, and
Kharif
,
C.
,
2006
, “
Long Time Interaction of Envelope Solitons and Freak Wave Formations
,”
Eur. J. Mech. B-Fluids
,
25
(
5
), pp.
536
553
. 10.1016/j.euromechflu.2006.02.007
39.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2006
, “
Implementation and Validation of Nonlinear Wavemaker Models in a HOS Numerical Wave Tank
,”
Int. J. Offshore Polar Eng.
,
16
(
3
), pp.
161
167
.
40.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2007
, “
3-D HOS Simulations of Extreme Waves in Open Seas
,”
Nat. Hazards Earth Syst. Sci.
,
7
(
1
), pp.
109
122
. 10.5194/nhess-7-109-2007
41.
Bonnefoy
,
F.
,
Ducrozet
,
G.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2010
, “Time Domain Simulation of Nonlinear Water Waves Using Spectral Methods,”
Advances in Numerical Simulation of Nonlinear Water Waves
,
Q. W.
Ma
, ed.,
World Scientific
,
London
, pp.
129
164
.
42.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2016
, “
HOS-Ocean: Open-Source Solver for Nonlinear Waves in Open Ocean Based on High-Order Spectral Method
,”
Comput. Phys. Commun.
,
203
(
1
), pp.
245
254
. 10.1016/j.cpc.2016.02.017
43.
Clamond
,
D.
,
Fructus
,
D.
,
Grue
,
J.
, and
Kristiansen
,
O.
,
2005
, “
An Efficient Model for Three-Dimensional Surface Wave Simulations. Part II: Generation and Absorption
,”
J. Comput. Phys.
,
205
(
2
), pp.
686
705
. 10.1016/j.jcp.2004.11.038
44.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsoe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam (R)
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
. 10.1002/fld.2726
45.
Alber
,
I. E.
,
1978
, “
Effects of Randomness on Stability of 2-Dimensional Surface Wavetrains
,”
Proc. R. Soc. London Ser. A—Math. Phys. Sci.
,
363
(
1715
), pp.
525
546
. 10.1098/rspa.1978.0181
46.
Mori
,
N.
, and
Janssen
,
P. A. E. M.
,
2006
, “
On Kurtosis and Occurrence Probability of Freak Waves
,”
J. Phys. Oceanogr.
,
36
(
7
), pp.
1471
1483
. 10.1175/JPO2922.1
47.
Janssen
,
P. A. E. M.
,
2009
, “
On Some Consequences of the Canonical Transformation in the Hamiltonian Theory of Water Waves
,”
J. Fluid Mech.
,
637
(
1
), pp.
1
44
. 10.1017/S0022112009008131
48.
Janssen
,
P.
,
2014
, “
On a Random Time Series Analysis Valid for Arbitrary Spectral Shape
,”
J. Fluid Mech.
,
759
(
1
), pp.
21
. 10.1017/jfm.2014.565
49.
Fedele
,
F.
,
2015
, “
On the Kurtosis of Deep-Water Gravity Waves
,”
J. Fluid Mech.
,
782
(
1
), pp.
25
36
. 10.1017/jfm.2015.538
50.
Goda
,
Y.
,
2000
, “Random Seas and Design of Maritime Structures,”
Advanced Series on Ocean Engineering
, 2nd ed., Vol.
15
,
P. L.-F.
Liu
, ed.,
World Scientific Publishing
,
Singapore
, https://www.worldscientific.com/worldscibooks/10.1142/3587
51.
Mei
,
C. C.
,
Stiassnie
,
M.
, and
Yue
,
D. K. P.
,
2005
, “Theory and Applications of Ocean Surface Waves,”
Advanced Series on Ocean Engineering
, Vol.
23
,
P. L.-F.
Liu
, ed.,
World Scientific Publishing
,
Singapore
, https://www.worldscientific.com/worldscibooks/10.1142/5566
52.
Touboul
,
J.
, and
Kharif
,
C.
,
2010
, “Two-Dimensional Direct Numerical Simulations of the Dynamics of Rogue Waves Under Wind Action,”
Advances in Numerical Simulation of Nonlinear Water Waves
,
Q. W.
Ma
, ed.,
World Scientific
,
London
, pp.
43
74
.
53.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touze
,
D.
, and
Ferrant
,
P.
,
2012
, “
A Modified High-Order Spectral Method for Wavemaker Modeling in a Numerical Wave Tank
,”
Eur. J. Mech. B-Fluids
,
34
(
1
), pp.
19
34
. 10.1016/j.euromechflu.2012.01.017
54.
Dommermuth
,
D.
,
2000
, “
The Initialization of Nonlinear Waves Using an Adjustment Scheme
,”
Wave Motion
,
32
(
4
), pp.
307
317
. 10.1016/S0165-2125(00)00047-0
55.
Kharif
,
C.
, and
Pelinovsky
,
E.
,
2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,”
Eur. J. Mech. B-Fluids
,
22
(
6
), pp.
603
634
. 10.1016/j.euromechflu.2003.09.002
56.
Fadaeiazar
,
E.
,
Alberello
,
A.
,
Onorato
,
M.
,
Leontini
,
J.
,
Frascoli
,
F.
,
Waseda
,
T.
, and
Toffoli
,
A.
,
2018
, “
Wave Turbulence and Intermittency in Directional Wave Fields
,”
Wave Motion
,
83
(
1
), p.
94
101
. 10.1016/j.wavemoti.2018.09.002
57.
Fadaeiazar
,
E.
,
Leontini
,
J.
,
Onorato
,
M.
,
Waseda
,
T.
,
Alberello
,
A.
, and
Toffoli
,
A.
,
2020
, “
Fourier Amplitude Distribution and Intermittency in Mechanically Generated Surface Gravity Waves
,”
Phys. Rev. E
,
102
(
1
), p.
8
. 10.1103/PhysRevE.102.013106
58.
Tayfun
,
M. A.
, and
Fedele
,
F.
,
2007
, “
Wave-Height Distributions and Nonlinear Effects
,”
Ocean Eng.
,
34
(
11–12
), pp.
1631
1649
. 10.1016/j.oceaneng.2006.11.006
59.
Tayfun
,
M. A.
,
1980
, “
Narrow-Band Non-Linear Sea Waves
,”
J. Geophys. Res.-Oceans
,
85
(
NC3
), pp.
1548
1552
. 10.1029/JC085iC03p01548
60.
Fedele
,
F.
, and
Tayfun
,
M. A.
,
2009
, “
On Nonlinear Wave Groups and Crest Statistics
,”
J. Fluid Mech.
,
620
(
1
), pp.
221
239
. 10.1017/S0022112008004424
61.
Benetazzo
,
A.
,
Barbariol
,
F.
,
Bergamasco
,
F.
,
Torsello
,
A.
,
Carniel
,
S.
, and
Sclavo
,
M.
,
2015
, “
Observation of Extreme Sea Waves in a Space-Time Ensemble
,”
J. Phys. Oceanogr.
,
45
(
9
), pp.
2261
2275
. 10.1175/JPO-D-15-0017.1
62.
Fedele
,
F.
,
2012
, “
Space-Time Extremes in Short-Crested Storm Seas
,”
J. Phys. Oceanogr.
,
42
(
9
), pp.
1601
1615
. 10.1175/JPO-D-11-0179.1
63.
Romolo
,
A.
, and
Arena
,
F.
,
2015
, “
On Adler Space-Time Extremes During Ocean Storms
,”
J. Geophys. Res.-Oceans
,
120
(
4
), pp.
3022
3042
. 10.1002/2015JC010749
64.
Romolo
,
A.
,
Malara
,
G.
,
Laface
,
V.
, and
Arena
,
F.
,
2016
, “
Space-Time Long-Term Statistics of Ocean Storms
,”
Probab. Eng. Mech.
,
44
(
1
), pp.
150
162
. 10.1016/j.probengmech.2015.10.004
65.
Fedele
,
F.
,
Lugni
,
C.
, and
Chawla
,
A.
,
2017
, “
The Sinking of the El Faro: Predicting Real World Rogue Waves During Hurricane Joaquin
,”
Sci. Rep.
,
7
(
1
), pp.
15
. 10.1038/s41598-017-11505-5
You do not currently have access to this content.