Abstract

The hydrodynamic performance of a novel and efficient concept of a floating oscillating water column device has been investigated. The new concept consists of two chambers. These chambers are positioned on the upstream (fore chamber) and on the downstream (rear chamber) of the incident wave direction. The rear chamber acts mainly similar to a backward bent duct buoy system, while the design of the fore chamber follows conventional types of oscillating water column systems with the harbor plates (bottom plates and side plates) elongated outside of the fore chamber. The primary efficiency of the devised concept has been investigated in the frequency domain. In this context, to solve the corresponding diffraction and radiation problems due to the influence of the air pressure inside the chambers as well as motions of the body, an in-house code has been developed in two-dimensional using the boundary element method based on the linear wave theory. The obtained numerical results show that the introduced concept has advanced hydrodynamic efficiency in a broad range of waves.

References

1.
Falcão
,
A.
,
2015
, “Developments in Oscillating Water Column Wave Energy Converters and Air Turbines,”
Renewable Energies Offshore
,
C.
Guedes Soares
, ed.,
Taylor & Francis Group
,
London
, pp.
3
11
.
2.
Hong
,
D.
,
Hong
,
S.
, and
Hong
,
S.
,
2004
, “
Numerical Study of the Motions and Drift Force of a Floating OWC Device
,”
Ocean Eng.
,
31
(
2
), pp.
139
164
. 10.1016/S0029-8018(03)00118-5
3.
Crema
,
I.
,
Simonetti
,
I.
,
Cappietti
,
L.
, and
Oumeraci
,
H.
,
2015
, “
Laboratory Experiments on Oscillating Water Column Wave Energy Converters Integrated in a Very Large Floating Structure
,”
Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC)
,
Nantes, France
,
Sept. 6–11
, pp.
6
11
.
4.
Elhanafi
,
A.
,
Macfarlane
,
G.
,
Fleming
,
A.
, and
Leong
,
Z.
,
2017
, “
Experimental and Numerical Investigations on the Hydrodynamic Performance of a Floating–Moored Oscillating Water Column Wave Energy Converter
,”
Appl. Energy
,
205
, pp.
369
390
. 10.1016/j.apenergy.2017.07.138
5.
Elhanafi
,
A.
,
Fleming
,
A.
,
Macfarlane
,
G.
, and
Leong
,
Z.
,
2017
, “
Numerical Hydrodynamic Analysis of an Offshore Stationary–Floating Oscillating Water Column–Wave Energy Converter Using CFD
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
1
), pp.
77
99
. 10.1016/j.ijnaoe.2016.08.002
6.
Elhanafi
,
A.
,
Macfarlane
,
G.
,
Fleming
,
A.
, and
Leong
,
Z.
,
2017
, “
Experimental and Numerical Investigations on the Intact and Damage Survivability of a Floating–Moored Oscillating Water Column Device
,”
Appl. Ocean Res.
,
68
, pp.
276
292
. 10.1016/j.apor.2017.09.007
7.
Masuda
,
Y.
,
Yamazaki
,
T.
,
Outa
,
Y.
, and
McCormick
,
M.
,
1987
, “
Study of Backward Bent Duct Buoy
,”
OCEANS'87
,
Halifax, NS, Canada
,
Sept. 28–Oct. 1
, IEEE, pp.
384
389
. https://dx.doi.org/10.1109/OCEANS.1987.1160750
8.
Hong
,
D.
,
Hong
,
S.
, and
Hong
,
S.
,
2004
, “
Numerical Study on the Reverse Drift Force of Floating BBDB Wave Energy Absorbers
,”
Ocean Eng.
,
31
(
10
), pp.
1257
1294
. 10.1016/j.oceaneng.2003.12.007
9.
Rezanejad
,
K.
, and
Guedes Soares
,
C.
,
2015
, “Hydrodynamic Performance Assessment of a Floating Oscillating Water Column,”
Maritime Technology and Engineering
,
C.
Guedes Soares
, and
T.
Santos
, eds.,
Taylor & Francis Group
,
London
, pp.
1287
1296
.
10.
Rezanejad
,
K.
, and
Guedes Soares
,
C.
,
2014
, “Numerical Study of a Large Floating Oscillating Water Column Device Using a 2D Boundary Element Method,”
Developments in Maritime Transportation and Exploitation of Sea Resources
,
C.
Guedes Soares
, and
F.
López Peña
, eds.,
Taylor & Francis Group
, pp.
951
960
.
11.
Chen
,
T.
,
Wu
,
B.
, and
Li
,
M.
,
2017
, “
Flume Experiment Study on Capture Width Ratio of a New Backward Bent Duct Buoy With a Pentagon Buoyancy Cabin
,”
Ocean Eng.
,
141
, pp.
12
17
. 10.1016/j.oceaneng.2017.06.013
12.
Silva
,
D.
,
Rusu
,
E.
, and
Guedes Soares
,
C.
,
2013
, “
Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore
,”
Energies
,
6
(
3
), pp.
1344
1364
. 10.3390/en6031344
13.
Castro-Santos
,
L.
,
Silva
,
D.
,
Bento
,
A. R.
,
Salvação
,
N.
, and
Guedes Soares
,
C.
,
2018
, “
Economic Feasibility of Wave Energy Farms in Portugal
,”
Energies
,
11
(
11
), p.
3149
. 10.3390/en11113149
14.
Rezanejad
,
K.
, and
Guedes Soares
,
C.
,
2018
, “
Dispositivo de conversão da energia das ondas (Wave Energy Converter Device)
,” International (patent) application number: WO2018PT00002 20180209.
15.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Guedes Soares
,
C.
,
2015
, “
Analytical and Numerical Study of Dual-Chamber Oscillating Water Columns on Stepped Bottom
,”
Renewable Energy
,
75
, pp.
272
282
. 10.1016/j.renene.2014.09.050
16.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Guedes Soares
,
C.
,
2016
, “
Analytical and Numerical Study of Nearshore Multiple Oscillating Water Columns
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
2
), p.
021901
. 10.1115/1.4032303
17.
Elhanafi
,
A.
,
Macfarlane
,
G.
, and
Ning
,
D.
,
2018
, “
Hydrodynamic Performance of Single–Chamber and Dual–Chamber Offshore–Stationary Oscillating Water Column Devices Using CFD
,”
Appl. Energy
,
228
, pp.
82
96
. 10.1016/j.apenergy.2018.06.069
18.
Ning
,
D.
,
Wang
,
R.
, and
Zhang
,
C.
,
2017
, “
Numerical Simulation of a Dual-Chamber Oscillating Water Column Wave Energy Converter
,”
Sustainability
,
9
(
9
), p.
1599
. 10.3390/su9091599
19.
Ning
,
D.
,
Zhou
,
Y.
, and
Zhang
,
C.
,
2018
, “
Hydrodynamic Modeling of a Novel Dual-Chamber OWC Wave Energy Converter
,”
Appl. Ocean Res.
,
78
, pp.
180
191
. 10.1016/j.apor.2018.06.016
20.
Rezanejad
,
K.
,
Bhattacharjee
,
J.
, and
Guedes Soares
,
C.
,
2013
, “
Stepped Sea Bottom Effects on the Efficiency of Nearshore Oscillating Water Column Device
,”
Ocean Eng.
,
70
, pp.
25
38
. 10.1016/j.oceaneng.2013.05.029
21.
Rezanejad
,
K.
,
Gadelho
,
J.
, and
Guedes Soares
,
C.
,
2018
, “
Hydrodynamic Analysis of an Oscillating Water Column Wave Energy Converter in the Stepped Bottom Condition Using CFD
,”
Renewable Energy
,
135
, pp.
1241
1259
. 10.1016/j.renene.2018.09.034
22.
Rezanejad
,
K.
, and
Guedes Soares
,
C.
,
2018
, “
Enhancing the Primary Efficiency of an Oscillating Water Column Wave Energy Converter Based on a Dual-Mass System Analogy
,”
Renewable Energy
,
123
, pp.
730
747
. 10.1016/j.renene.2018.02.084
23.
Rezanejad
,
K.
,
Souto-Iglesias
,
A.
, and
Guedes Soares
,
C.
,
2019
, “
Experimental Investigation on the Hydrodynamic Performance of an L-Shaped Duct Oscillating Water Column Wave Energy Converter
,”
Ocean Eng.
,
173
, pp.
388
398
. 10.1016/j.oceaneng.2019.01.009
24.
Rezanejad
,
K.
,
Gadelho
,
J. F.
,
López
,
I.
,
Carballo
,
R.
, and
Guedes Soares
,
C.
, “
Improving the Hydrodynamic Performance of OWC Wave Energy Converter by Attaching a Step
,”
Proceedings of 38th International Conference on Ocean, Offshore and Arctic Engineering
, ASME Paper No OMAE2019-96408.
25.
Falnes
,
J.
, and
McIver
,
P.
,
1985
, “
Surface Wave Interactions With Systems of Oscillating Bodies and Pressure Distributions
,”
Appl. Ocean Res.
,
7
(
4
), pp.
225
234
. 10.1016/0141-1187(85)90029-X
26.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific Publishing Co Inc.
,
Singapore
.
27.
Evans
,
D.
,
1982
, “
Wave-Power Absorption by Systems of Oscillating Surface Pressure Distributions
,”
J. Fluid Mech.
,
114
, pp.
481
499
. 10.1017/S0022112082000263
28.
Rezanejad
,
K.
,
Guedes Soares
,
C.
,
López
,
I.
, and
Carballo
,
R.
,
2017
, “
Experimental and Numerical Investigation of the Hydrodynamic Performance of an Oscillating Water Column Wave Energy Converter
,”
Renewable Energy
,
106
, pp.
1
16
. 10.1016/j.renene.2017.01.003
29.
Evans
,
D.
, and
Porter
,
R.
,
1995
, “
Hydrodynamic Characteristics of an Oscillating Water Column Device
,”
Appl. Ocean Res.
,
17
(
3
), pp.
155
164
. 10.1016/0141-1187(95)00008-9
30.
Rezanejad
,
K.
,
Gadelho
,
J. F.
,
Xu
,
S.
, and
Guedes Soares
,
C.
Experimental Investigation on the Hydrodynamic Performance of a New Type Floating Oscillating Water Column Device With Dual Chambers
,” Submitted.
31.
Xu
,
S.
,
Rezanejad
,
K.
,
Gadelho
,
J. F.
,
Wang
,
S.
, and
Guedes Soares
,
C.
,
2020
, “
Experimental Investigation on a Dual Chamber Floating Oscillating Water Column Moored by Flexible Mooring Systems
,”
Ocean Eng.
,
216
, p.
108083
. 10.1016/j.oceaneng.2020.108083
32.
Gadelho
,
J. F.
,
Rezanejad
,
K.
,
Xu
,
S.
,
Hinostroza
,
M.
, and
Guedes Soares
,
C.
2021
, “
Experimental Study on the Motions of a Dual Chamber Floating Oscillating Water Column Device
,”
Renewable Energy
,
170
, pp.
1257
1274
.
33.
Toyota
,
K.
,
Nagata
,
S.
,
Imai
,
Y.
, and
Setoguchi
,
T.
,
2009
, “
Research for Evaluating Performance of OWC-Type Wave Energy Converter Backward Bent Duct Buoy
,”
Proceedings of the 8th European Wave and Tidal Energy Conference
,
Uppsala, Sweden
,
Sept. 7–10
, pp.
901
913
.
34.
Rezanejad
,
K.
,
Abbasnia
,
A.
, and
Guedes Soares
,
C.
,
2021
, “Hydrodynamic Performance Assessment of Dual Chamber Shoreline Oscillating Water Column Devices,”
Developments in Renewable Energies Offshore
,
C.
Guedes Soares
, ed.,
Taylor & Francis Group
,
London
, pp.
188
196
.
You do not currently have access to this content.