Abstract
Welded connections between tubulars and transverse plates are used to build together part structures such as support of flare towers and wind turbines and deck structures on foundation structures. They are used in traditional jacket structures for oil and gas production and in support structures for wind turbines. These welded connections are typically made from the outside resulting in a weld root on the inside and a weld toe on the outside. Different S–N curves apply to these positions; therefore, stresses both on the inside and the outside are needed for fatigue assessment. From the actual design, it is noted that the thicknesses of the tubulars being connected can be different. Also, the diameters of the tubulars can be different. In addition, the fabrication is associated with some fabrication tolerances that provide local eccentricity moments to be transferred through these connections. In this paper, analytical expressions for stress concentration factors for these connections are presented based on classical shell theory. The stress concentration is dependent on the radial restraint from the transverse plate and the eccentricity of the neutral axes in the tubular thickness of one tubular relative to the other tubular. The superposition principle is used to derive resulting stress concentration factors for the inside weld root and the outside weld toe.