Abstract

Flexible pipes are distinctive multi-layer structures that are designed to resist different loads when they are utilized in severe deep-water environments. However, they lack a special structural layer to withstand torsion. Tensile armors mainly resist torque although they are designed to bear only tension with the consideration of torque balance. Especially, when a flexible pipe is loaded out from the cargo vessel into the installation vessel, twist angle could be accumulated at high level so that some failure modes will occur due to the large torsion. However, the failure mechanism is very complicated owing to the interaction effect between the different layers. First, the interaction mechanism between the layers of flexible pipes is analyzed under large torsion, and a few potential failure modes are identified, such as the tensile armors strength failure and inner structural layers collapse failure. In addition, to offer a quantitative prediction of the maximum allowable twist angle for flexible pipes, a mechanical model is set up to analyze their torsion behavior. The theoretical descriptions of the involved failure behaviors are investigated, and the theoretical methodology of the failure criteria for predicting the torsion resistance capacity is proposed. Finally, a numerical model is established through experimental verification. The numerical results illustrate that the theoretical prediction methodology is conservative, which can be used to predict the torsion resistance capacity of flexible pipes and to guide their operation and installation in engineering.

References

References
1.
Palmer
,
A. C.
, and
King
,
R. A.
,
2004
,
Subsea Pipeline Engineering
,
PennWell Books
,
Tulsa, OK
.
2.
API, R. 17B
,
2008
,
Recommended Practice for Flexible Pipes
,
American Petroleum Institute
,
Washington, DC
, p.
2
.
3.
Spec, A. P. I. 17J
,
1999
,
Specification for Unbonded Flexible Pipe
,
American Petroleum Institute
,
Washington, DC
.
4.
Sævik
,
S.
,
2016
,
Aspects of Design and Analysis of Offshore Pipelines and Flexibles
,
Southwest Jiaotong University Press
,
Cheng Du, China
.
5.
Longva
,
V.
, and
Sævik
,
S.
,
2016
, “
On Prediction of Torque in Flexible Pipe Reeling Operations Using a Lagrangian–Eulerian FE Framework
,”
Mar. Struct.
,
46
, pp.
229
254
. 10.1016/j.marstruc.2016.01.004
6.
Marinho
,
M. G.
,
Camerini
,
C. S.
,
Dos Santos
,
J. M.
, and
Pires
,
G. P.
,
2007
, “
Surface Monitoring Techniques for a Continuous Flexible Riser Integrity Assessment
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
.
7.
Knapp
,
R.
,
1975
, “
Nonlinear Analysis of a Helically Armored Cable With Nonuniform Mechanical Properties in Tension and Torsion
,”
OCEAN 75 Conference
,
San Diego, CA
,
Sept. 22–25
, pp.
155
164
.
8.
Knapp
,
R. H.
,
1979
, “
Derivation of a New Stiffness Matrix for Helically Armoured Cables Considering Tension and Torsion
,”
Int. J. Numer. Methods Eng.
,
14
(
4
), pp.
515
529
. 10.1002/nme.1620140405
9.
Knapp
,
R. H.
,
1981
, “
Torque and Stress Balanced Design of Helically Armored Cables
,”
ASME J. Eng. Ind.
,
103
(
1
), pp.
61
66
. 10.1115/1.3184460
10.
Lanteigne
,
J.
,
1985
, “
Theoretical Estimation of the Response of Helically Armored Cables to Tension, Torsion, and Bending
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
423
432
. 10.1115/1.3169064
11.
LeClair
,
R. A.
, and
Costello
,
G. A.
,
1988
, “
Axial, Bending and Torsional Loading of a Strand With Friction
,”
ASME J. Offshore Mech. Arct. Eng.
,
110
(
1
), pp.
38
42
. 10.1115/1.3257121
12.
Jolicoeur
,
C.
, and
Cardou
,
A.
,
1991
, “
A Numerical Comparison of Current Mathematical Models of Twisted Wire Cables Under Axisymmetric Loads
,”
ASME J. Energy Resour. Technol.
,
113
(
4
), pp.
241
249
. 10.1115/1.2905907
13.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torsional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
205
227
. 10.1016/0951-8339(92)90029-O
14.
Custódio
,
A. B.
, and
Vaz
,
M. A.
,
2002
, “
A Nonlinear Formulation for the Axisymmetric Response of Umbilical Cables and Flexible Pipes
,”
Appl. Ocean Res.
,
24
(
1
), pp.
21
29
. 10.1016/S0141-1187(02)00007-X
15.
Ramos
,
R.
, and
Pesce
,
C. P.
,
2004
, “
A Consistent Analytical Model to Predict the Structural Behaviour of Flexible Risers Subjected to Combined Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
2
), pp.
141
146
. 10.1115/1.1710869
16.
Ramos
,
R.
,
de Arruda Martins
,
C.
,
Pesce
,
C. P.
, and
Roveri
,
F. E.
,
2008
, “
A Case Study on the Axial-Torsional Behavior of Flexible Risers
,”
ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
June 15–20
, pp.
481
491
.
17.
Ramos
,
R.
,
Martins
,
C. A.
,
Pesce
,
C. P.
, and
Roveri
,
F. E.
,
2014
, “
Some Further Studies on the Axial–Torsional Behavior of Flexible Risers
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
1
), p.
011701
. 10.1115/1.4025541
18.
Ramos
,
R.
, and
Kawano
,
A.
,
2015
, “
Local Structural Analysis of Flexible Pipes Subjected to Traction, Torsion and Pressure Loads
,”
Mar. Struct.
,
42
, pp.
95
114
. 10.1016/j.marstruc.2015.03.004
19.
Xiang
,
L.
,
Wang
,
H. Y.
,
Chen
,
Y.
,
Guan
,
Y. J.
,
Wang
,
Y. L.
, and
Dai
,
L. H.
,
2015
, “
Modeling of Multi-Strand Wire Ropes Subjected to Axial Tension and Torsion Loads
,”
Int. J. Solids Struct.
,
58
, pp.
233
246
. 10.1016/j.ijsolstr.2015.01.007
20.
Foti
,
F.
, and
di Roseto
,
A. D. L.
,
2016
, “
Analytical and Finite Element Modelling of the Elastic–Plastic Behaviour of Metallic Strands Under Axial–Torsional Loads
,”
Int. J. Mech. Sci.
,
115
, pp.
202
214
. 10.1016/j.ijmecsci.2016.06.016
21.
Sævik
,
S.
, and
Bruaseth
,
S.
,
2005
, “
Theoretical and Experimental Studies of the Axisymmetric Behaviour of Complex Umbilical Cross-Sections
,”
Appl. Ocean Res.
,
27
(
2
), pp.
97
106
. 10.1016/j.apor.2005.11.001
22.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2008
, “
A Finite Element Analysis for Unbonded Flexible Risers Under Torsion
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), pp.
169
173
. 10.1115/1.2948956
23.
Liu
,
M. S.
,
Liu
,
X. W.
,
Li
,
J. Y.
, and
Ju
,
J. S.
,
2017
, “
Numerical Simulation of Flexible Multilayered Pipe/Riser Under Torsion
,”
Strength Mater.
,
49
(
1
), pp.
180
187
. 10.1007/s11223-017-9856-6
24.
Chang
,
H. C.
, and
Chen
,
B. F.
,
2019
, “
Mechanical Behavior of Submarine Cable Under Coupled Tension, Torsion and Compressive Loads
,”
Ocean Eng.
,
189
, p.
106272
. 10.1016/j.oceaneng.2019.106272
25.
Timoshenko
,
S. P.
,
1936
,
Theory of Elastic Stability
,
McGraw-Hill Book Co
,
St. Petersburg, Russia
, p.
220
.
26.
Tang
,
M.
,
Lu
,
Q.
,
Yan
,
J.
, and
Yue
,
Q.
,
2016
, “
Buckling Collapse Study for the Carcass Layer of Flexible Pipes Using a Strain Energy Equivalence Method
,”
Ocean Eng.
,
111
, pp.
209
217
. 10.1016/j.oceaneng.2015.10.057
You do not currently have access to this content.