Abstract

To define more clearly vibration-related problems of ship propulsion systems, a procedure incorporating operating state recognition into conventional vibration analysis is proposed in this paper. Emphasis is placed on identifying operating modes and decay levels through a multi-layer perceptron (MLP) with a hierarchical prior. First, a variant of stochastic gradient descent (SGD) with momentum is presented for integrating a hierarchical prior into the parameter learning of an MLP network. Then, the MLP network, governing information representation through multiple levels of abstraction is designed, and the hierarchical prior, representing a clear explanation in physics of system operating for an operator or maintainer, is also constructed. Finally, the operating data from a combined diesel or gas turbine (CODOG) system validate that the accuracy improvement of operating state recognition can be achieved by MLP with a hierarchical prior when the sample size is relatively small. Meanwhile, the vibration signals from the CODOG system verify the effectiveness of the vibration analysis procedure coupled with operating state recognition.

References

References
1.
Thompson
,
B. D.
, and
Grobler
,
J.
,
2012
, “
Development U.S. Navy Gas Turbine Vibration Analysis Expertise, LM2500 Vibration and Trim Balance
,”
Proceedings of ASME Turbo Expo 2012: GT2012
,
Copenhagen, Denmark
,
June 11–15
, pp.
243
254
.
2.
Grządziela
,
A.
,
2006
, “
Analysis of Vibration Parameters of Ship Gas Turbine Engines
,”
Pol. Marit. Res.
,
2
(
48
), pp.
22
26
.
3.
Kandl
,
M. G.
, and
Groghan
,
D. A.
,
1980
, “
U.S. Navy, LM2500 Gas Turbine Condition Monitoring Development Experience
,”
ASME 1980 International Gas Turbine Conference and Products Show
,
New Orleans, LO
,
Mar. 10–13
, pp.
1
9
.
4.
Hartranft
,
J. J.
,
1995
, “
Description of a Vibration Diagnostic Trending Approach for a Condition Monitoring System for the LM2500 Gas Turbine
,”
ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
June 5–8
, pp.
1
7
.
5.
Charchalis
,
A.
,
2011
, “
Diagnosing of Ship Propulsion Elements by Vibration Measurement
,”
J. KONES Powertrain Transp.
,
18
(
1
), pp.
93
98
.
6.
Kallappa
,
P.
,
Byington
,
C. S.
,
Kalgren
,
P. W.
,
DeChristopher
,
M.
, and
Amin
,
S.
,
2005
, “
High Frequency Incipient Fault Detection for Engine Bearing Components
,”
ASME Turbo Expo 2005: Power for Land, Sea and Air
,
Reno, NV
,
June 6–9
, pp.
413
427
.
7.
Byington
,
C. S.
,
Orsagh
,
R.
,
Kallappa
,
P.
,
Sheldon
,
J.
,
DeChristopher
,
M.
,
Amin
,
S.
, and
Hines
,
J.
,
2006
, “
Recent Case Studies in Bearing Fault Detection and Prognosis
,”
Proceedings IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 4–11
, pp.
1
8
.
8.
Libby
,
M. E.
,
Van Dyke
,
J.
, and
Desgrey
,
J. R.
,
2009
, “
Integrated Machinery Condition Assessment—A DDG Pilot Program
,”
ASNE Intelligent Ships Symposium VIII
,
Philadelphia, PA
,
May 20–21
, pp.
1
8
.
9.
Moreno-Barragan
,
J.
,
2001
, “
Engine Vibration Monitoring and Diagnosis Based on On-Board Captured Data
,”
RTO AVT Symposium on “Ageing Mechanisms and Control:Part B—Monitoring and Management of Gas Turbine Fleets for Extended Life and Reduced Costs,”
,
Manchester, UK
,
Oct. 8–11
, pp.
1
13
.
10.
Barndt
,
G.
,
Sarkar
,
S.
, and
Miller
,
C.
,
2006
, “
Maneuver Regime Recognition Development and Verification for H-60 Structural Monitoring
,”
American Helicopter Society 63rd Annual Forum
,
Virginia Beach, VA
,
May 1–3
, pp.
317
328
.
11.
Teal
,
R. S.
,
Evernham
,
J. T.
,
Larchuk
,
T. J.
,
Miller
,
D. G.
,
Marquith
,
D. E.
,
White
,
F.
, and
Deibler
,
D. T.
,
1997
, “
Regime Recognition for MH-47E Structure Usage Monitoring
,”
Proceedings of American Helicopter Society 53rd Annual Forum
,
Virginia Beach, VA
,
Apr. 29–May 1
, pp.
1267
1284
.
12.
Kim
,
D.
, and
Pechaud
,
L.
,
2001
, “
Maneuver Recognition and Prediction of Empennage Flight Loads of General Aviation Aircraft
,”
1st AIAA, Aircraft, Technology Integration, and Operations Forum
,
Los Angeles, CA
,
Oct. 16–18
, pp.
1
7
.
13.
He
,
D.
,
Wu
,
S.
, and
Bechhoefer
,
E.
,
2010
, “A Regime Recognition Algorithm for Helicopter Usage Monitoring,”
Aerospace Technologies Advancements
,
T. T.
Arif
, ed.,
InTechOpen
,
Croatia
, pp.
391
404
.
14.
Punjani
,
A.
, and
Abbeel
,
P.
,
2015
, “
Deep Learning Helicopter Dynamics Models
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
3223
3230
.
15.
Lee
,
T. S.
, and
Mumford
,
D.
,
2003
, “
Hierarchical Bayesian Inference in the Visual Cortex
,”
J. Opt. Soc. Am. A
,
20
(
7
), pp.
1434
1448
. 10.1364/josaa.20.001434
16.
Lee
,
T. S.
,
Mumford
,
D.
,
Romero
,
R.
, and
Lamme
,
V. A. F.
,
1998
, “
The Role of the Primary Visual Cortex in Higher Level Vision
,”
Vision Res.
,
38
(
15–16
), pp.
2429
2454
. 10.1016/S0042-6989(97)00464-1
17.
Arel
,
I.
,
Rose
,
D. C.
, and
Karnowski
,
T. P.
,
2010
, “
Deep Machine Learning—A New Frontier in Artificial Intelligence Research
,”
IEEE Comput. Intell. Mag.
,
5
(
4
), pp.
13
18
. 10.1109/MCI.2010.938364
18.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
. 10.1038/nature14539
19.
Nielsen
,
M.
,
2015
, “
Neural Networks and Deep Learning, Chapter 6 Deep Learning
,” http://neuralnetworksanddeeplearning.com/chap6.html
20.
Burgess
,
J.
,
2016
, “
One-Shot Learning in Discriminative Neural Networks
,”
Master thesis
,
University of Cambridge
,
UK
.
21.
Shahbaba
,
B.
, and
Neal
,
R. M.
,
2007
, “
Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior
,”
Bayesian Anal.
,
2
(
1
), pp.
221
238
. 10.1214/07-BA209
22.
Fox
,
J.
,
1997
,
Applied Regression Analysis, Linear Models and Related Methods
,
Sage Publications
,
Thousand Oaks
, pp.
223
224
. ISBN10: 080394540X
23.
Salakhutdinov
,
R.
,
Torralba
,
A.
, and
Tenenbaum
,
J.
,
2011
, “
Learning to Share Visual Appearance for Multiclass Object Detection
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Colorado Springs, CO
,
June 20–25
, pp.
1481
1488
.
24.
Gopal
,
S.
,
Yang
,
Y.
,
Bai
,
B.
, and
Niculescu-mizil
,
A.
,
2012
, “
Bayesian Models for Large-Scale Hierarchical Classification
,”
Proceedings of the 25th International Conference on Neural Information Processing Systems
,
Lake Tahoe, NE
,
Dec. 3–6
, pp.
2411
2419
.
25.
Salakhutdinov
,
R.
,
Tenenbaum
,
J. B.
, and
Torralba
,
A.
,
2011
, “
Learning to Learn with Compound HD Models
,”
Proceedings of the 24th International Conference on Neural Information Processing Systems
,
Granada, Spain
,
Dec. 12–14
, pp.
2061
2069
.
26.
Srivastava
,
N.
, and
Salakhutdinov
,
R.
,
2013
, “
Discriminative Transfer Learning with Tree-Based Priors
,”
Proceedings of the 26th International Conference on Neural Information Processing Systems
,
Lake Tahoe, NE
,
Dec. 5–8
, pp.
2094
2102
.
27.
Ruder
,
S.
,
2016
, “
An Overview of Gradient Descent Optimization Algorithms
,” http://sebastianruder.com/optimizing-gradient-descent/index.html
28.
Loshchilov
,
I.
, and
Hutter
,
F.
,
2017
, “
SGDR: Stochastic Gradient Descent with Warm Restarts
,”
5th International Conference on Learning Representations
,
Palais des Congrès Neptune, Toulon, France
,
Apr. 24–26
, pp.
1
16
.
This content is only available via PDF.
You do not currently have access to this content.