Abstract

Motion predictions of floating bodies in extreme waves represent a challenging problem in naval hydrodynamics. The solution of the seakeeping problem involves the study of complex non-linear wave-body interactions that require large computational costs. For this reason, over the years, many seakeeping models have been formulated in order to predict ship motions using simplified flow theories, usually based on potential flow theories. Neglecting viscous effects in the wave-induced forces might largely underestimate the energy dissipated by the system. This problem is particularly relevant for unconventional floating bodies at resonance. In these operating conditions, the linear assumption is no longer valid, and conventional boundary element methods, based on potential flow, might predict unrealistic large responses if not corrected with empirical viscous damping coefficients. The application considered in this study is an offshore platform to be operated in a wind farm requiring operability even in extreme meteorological conditions. In this paper, we compare heave and pitch response amplitude operators predicted for an offshore platform using three different seakeeping models of increasing complexity, namely, a frequency-domain boundary element method (BEM), a partly nonlinear time domain BEM, and a non-linear viscous model based on the solution of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations. Results are critically compared in terms of accuracy, applicability, and computational costs.

References

References
1.
Tezdogan
,
T.
,
Demirel
,
Y. K.
,
Kellett
,
P.
,
Khorasanchi
,
M.
,
Incecik
,
A.
, and
Turan
,
O.
,
2015
, “
Full-Scale Unsteady RANS CFD Simulations of Ship Behaviour and Performance in Head Seas Due to Slow Steaming
,”
Ocean Eng.
,
97
, pp.
186
206
. 10.1016/j.oceaneng.2015.01.011
2.
Ruth
,
E.
,
Berge
,
B. O.
, and
Borgen
,
H.
,
2015
, “
Simulation of Added Resistance in High Waves
,
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
,
St. John's, Newfoundland, Canada
,
American Society of Mechanical Engineers
, p.
V011T12A018
.
3.
Shen
,
Z.
, and
Wan
,
D.
,
2013
, “
RANS Computations of Added Resistance and Motions of a Ship in Head Waves
,”
Int. J. Offshore Polar Eng.
,
23
(
4
), pp.
264
271
.
4.
Bonfiglio
,
L.
,
Vernengo
,
G.
,
Brizzolara
,
S.
, and
Bruzzone
,
D.
,
2016
, “
A Hybrid RANSE–Strip Theory Method for Prediction of Ship Motions
,”
Maritime Technology and Engineering III: Proceedings of the 3rd International Conference on Maritime Technology and Engineering
,
Lisbon, Portugal
,
CRC Press
, p.
241
.
5.
Mousaviraad
,
M.
,
Conger
,
M.
,
Stern
,
F.
,
Peterson
,
A.
, and
Ahmadian
,
M.
,
Validation of CFD-MBD FSI for High-Fidelity Simulations of Full-Scale WAM-V Sea-Trials With Suspended Payload
.
6.
Mousaviraad
,
S. M.
,
Bhushan
,
S.
, and
Stern
,
F.
,
2013
, “
URANS Studies of Wam-v Multi-Body Dynamics in Calm Water and Waves
,”
Third International Conference on Ship Maneuvering in Shallow and Confined Water
, Ghent, Belgium, pp.
3
5
.
7.
Bonfiglio
,
L.
, and
Brizzolara
,
S.
,
2013
, “
Influence of Viscosity on Radiation Forces: a Comparison Between Monohull, Catamaran and SWATH
,”
The Twenty-Third International Offshore and Polar Engineering Conference
,
Anchorage, AL
,
International Society of Offshore and Polar Engineers
.
8.
Bonfiglio
,
L.
, and
Brizzolara
,
S
.
2018
, “
Amplitude Induced Nonlinearity in Piston Mode Resonant Flow: A Fully Viscous Numerical Analysis
,”
ASME J. Offshore Mech. Arctic Eng.
,
140
(
1
), p.
011101
. 10.1115/1.4037487
9.
Zamora-Rodriguez
,
R.
,
Gomez-Alonso
,
P.
,
Amate-Lopez
,
J.
,
De-Diego-Martin
,
V.
,
Dinoi
,
P.
,
Simos
,
A.
, and
Souto-Iglesias
,
A.
,
2014
, “
Model Scale Analysis of a TLP Floating Offshore Wind Turbine
,”
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
.
10.
Kring
,
D. C.
,
1994
,
Time Domain Ship Motions by a Three-Dimensional Rankine Panel Method
,
Massachusetts Institute of Technology
.
11.
Kring
,
D. C.
,
Korsmeyer
,
F. T.
,
Singer
,
J.
,
Danmeier
,
D.
, and
White
,
J.
,
1999
, “
Accelerated Nonlinear Wave Simulations for Large Structures
,”
7th Int’l Conference on Numerical Ship Hydrodynamics
,
Nantes, France
.
12.
Kring
,
D. C.
,
Korsemeyer
,
F. T.
,
Singer
,
J.
, and
White
,
J.
,
2000
, “
Analyzing Mobile Offshore Bases Using Accelerated Boundary Element Methods
,”
J. Marine Struct.
,
13
(4–5)
, pp.
301
313
. 10.1016/S0951-8339(00)00033-2
13.
Kring
,
D. C.
,
Milewski
,
W. M.
, and
Fine
,
N. E.
,
2004
, “
Validation of a NURBS-based BEM for Multihull Ship Seakeeping
,”
25th Symposium on Naval Hydrodynamics
, St. John’s, The National Academies Press, Washington, DC.
14.
Beck
,
R. F.
, and
Scorpio
,
S. M.
,
1995
, “
A Desingularized Boundary Integral Method for Fully Nonlinear Water Wave Problems
,”
Twelfth Australasian Fluid Mechanics Conference
, Sydney, Australia, University of Sydney, Sydney, Australia, p.
6
.
15.
Cao
,
Y.
,
Beck
,
R. F.
, and
Schultz
,
W. W.
,
1994
, “
Nonlinear Computation of Wave Loads and Motions of Floating Bodies in Incident Waves
,”
Proceedings of the 9th International Workshop on Water Waves and Floating Bodies (IWW WFB)
.
16.
Zhang
,
X.
, and
Beck
,
R. F.
,
2007
, “
Computations for Large-Amplitude Two-Dimensional Body Motions
,”
J. Eng. Math.
,
58
(
1
), pp.
177
189
. 10.1007/s10665-006-9123-5
17.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
.
18.
Lee
,
C-H.
, and
Newman
,
J. N.
,
1988
, “
The Computation of Wave Loads on Large Offshore Structures
,”
Proceedings of the International Conference on Behaviour of Offshore Structures (BOSS’88)
, Tapir Pubishers, Trondheim, Norway, pp.
605
622
.
19.
Newman
,
J. N.
,
1977
,
Marine Hdrodynamics
,
MIT Press
.
20.
Newman
,
J. N.
,
1985
, “
Algorithms for the Free-Surface Green Function
,”
J. Eng. Math.
,
19
(
1
), pp.
57
67
. 10.1007/BF00055041
21.
Newman
,
J. N.
,
1986
, “
Distributions of Sources and Normal Dipoles Over a Quadrilateral Panel
,”
J. Eng. Math.
,
20
(
2
), pp.
113
126
. 10.1007/BF00042771
22.
Lee
,
C-H.
, and
Newman
,
J. N.
,
2005
, “
Computation of Wave Effects Using the Panel Method
,”
WIT Transactions on State-of-the-Art in Science and Engineering
,
18
,
WIT Press
.
23.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
25.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2014
,
Computational Methods for Fluid Dynamics
,
Springer Science & Business Media
.
26.
Perić
,
M.
,
2012
, “
Wave Impact, Body Motion and Overset Grids in STAR-CCM
,”
STAR South East Asian Conference
.
27.
Atreyapurapu
,
K.
,
Tallapragada
,
B.
, and
Voonna
,
K.
,
2014
, “
Simulation of a Free Surface Flow Over a Container Vessel Using CFD
,”
Int. J. Eng. Trends Technol. (IJETT)
, pp.
334
339
.
28.
Oggiano
,
L.
,
Pierella
,
F.
,
Nygaard
,
T. A.
,
De Vaal
,
J.
, and
Arens
,
E.
,
2016
, “
Comparison of Experiments and CFD Simulations of a Braceless Concrete Semi-Submersible Platform
,”
Energy Procedia
,
94
, pp.
278
289
. 10.1016/j.egypro.2016.09.184
29.
Perić
,
R.
, and
Abdel-Maksoud
,
M.
,
2016
, “
Reliable Damping of Free-Surface Waves in Numerical Simulations
,”
Ship Technol. Res.
,
63
(
1
), pp.
1
13
. 10.1080/09377255.2015.1119921
30.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
,
Vittori
,
F.
,
Azcona
,
J.
,
Uzunoglu
,
E.
,
Soares
,
C. G.
,
Harries
,
R.
,
Yde
,
A.
,
Galinos
,
C.
,
Hermans
,
K.
,
de Vaal
,
J. B.
,
Bozonnet
,
P.
,
Bouy
,
L.
,
Bayati
,
I.
,
Bergua
,
R.
,
Galvan
,
J.
,
Mendikoa
,
I.
,
Sanchez
,
C. B.
,
Shin
,
H.
,
Oh
,
S.
,
Molins
,
C.
, and
Debruyne
,
Y.
,
2017
, “
C5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
. 10.1016/j.egypro.2017.10.333
31.
Simos
,
A. N.
,
Ruggeri
,
F.
,
Watai
,
R. A.
,
Souto-Iglesias
,
A.
, and
Lopez-Pavon
,
C.
,
2018
, “
Slow-Drift of a Floating Wind Turbine: An Assessment of Frequency-Domain Methods Based on Model Tests
,”
Renewable Energy
,
116
, pp.
133
154
. 10.1016/j.renene.2017.09.059
32.
Pedersen
,
E. A.
,
2012
,
Motion Analysis of Semi-submersible
,
Institutt for Marin Teknikk
.
33.
Faltinsen
,
O. M.
,
1988
, “
Second Order Nonlinear Interactions Between Waves and Low Frequency Body Motion
,”
Nonlinear Water Waves. International Union of Theoretical and Applied Mechanics
,
Springer
,
Berlin, Heidelberg
.
34.
You
,
J.
, and
Faltinsen
,
O. M.
,
2015
, “
A Numerical Investigation of Second-Order Difference-Frequency Forces and Motions of a Moored Ship in Shallow Water
,”
J. Ocean Eng. Mar. Energy
,
1
(
2
), pp.
157
179
. 10.1007/s40722-015-0014-6
35.
Faltinsen
,
O. M.
,
1990
, “
Wave Loads on Offshore Structures
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
35
36
36.
Bearman
,
P. W.
,
Downie
,
M. J.
,
Graham
,
J. M. R.
, and
Obasaju
,
E. D.
,
1985
, “
Forces on Cylinders in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers
,”
J. Fluid Mech.
,
154
, pp.
337
356
10.1017/s0022112085001562
37.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous for Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
. 10.1016/j.jcp.2007.12.022
38.
Johnson
,
I. G.
,
1978
, “
A New Approach to Oscillatory Rough Turbulent Boundary Layers
,”
Series Paper 17
,
Institute of Hydrodynamic and Hydraulic Engineering. Technical University of Denmark Lyngby
.
39.
Faltinsen
,
O. M.
, and
Sortland
,
B.
,
1987
, “
Slow Drift Eddy Making Damping of a Ship
,”
Appl. Ocean Res.
,
9
(
1
), pp.
37
46
. 10.1016/S0141-1187(87)80001-9
40.
Tanaka
,
N.
,
Ikeda
,
Y.
, and
Nishino
,
K.
,
1982
, “
Hydrodynamic Viscous Force Acting on Oscillating Cylinders With Various Shapes
,”
Proceedings of the 6th Symposium of Marine Technology
,
The Society of Naval Architects of Japan
.
41.
ANSYS, AQWA, 2017, Users Manual (ver. 14.0)
.
ANSYS Incorporated
,
Canonsburg, PA
.
42.
AEGIR version 2015, User’s Manual
.
43.
Ogilvie
,
T. F.
, and
Tuck
,
E. O.
,
1969
, “
A Rational Theory of Ship Motions, Part 1
,”
Report 013
,
Dept. of Naval Arch., Univ. of Michigan
.
44.
STAR-CCM+ version 12.02. 011, 2017. User’s Manual
.
45.
Bonfiglio
,
L.
,
Perdikaris
,
P.
,
Brizzolara
,
S.
, and
Karniadakis
,
G. E.
,
2017
, “
Multi-fidelity Optimization of Super-Cavitating Hydrofoils
,”
Computer Methods in Applied Mechanics and Engineering
,
Elsevier
.
46.
Bonfiglio
,
L.
,
Perdikaris
,
P.
, and
Brizzolara
,
S.
,
2016
, “
Multi-Fidelity Optimization of High Speed SWATHs
,”
Proceedings of the SNAME Maritime Convention
,
Bellevue, WA
,
Nov. 1–5
.
You do not currently have access to this content.