Abstract

The annual power output of a current turbine is affected by flow separation followed by the stall condition in an environment of varying current speed. Flow separation appears as the fluid in the boundary layer over the blade surface loses its kinetic energy. Delaying this separation process is essential to extract more power throughout the year considering the variation in the current speed. Several active and passive means are available in the literature today to achieve a delay in the flow separation process. Inserting tubes in an aero/hydrofoil at a constant spacing, connecting the fluid near the leading edge and a downstream location on the suction side is a novel approach that has been numerically investigated here. The baseline profile chosen here is S1210, which is used in the current turbine blades. The hydrodynamic performance of the profile with tubes has been compared with the baseline profile in terms of the force coefficients, lift to drag ratio, and stall angle. The maximum lift has been noticed to be increased by 18% and the stall is delayed by 2 deg (from 10 deg to 12 deg). The maximum lift to drag ratio is increased by 130% at 12 deg (beyond the stall of the baseline profile). The results show that the insertion of tubes can make the existing profile more efficient for the stated application.

References

References
1.
Bahaj
,
A. S.
,
Batten
,
W. M. J.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(
15
), pp.
2479
2490
. 10.1016/j.renene.2007.10.001
2.
Bahaj
,
A. S.
, and
Myers
,
L. E.
,
2003
, “
Fundamentals Applicable to the Utilisation of Marine Current Turbines for Energy Production
,”
Renewable Energy
,
28
(
14
), pp.
2205
2211
. 10.1016/S0960-1481(03)00103-4
3.
Goundar
,
J. N.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2012
, “
Numerical and Experimental Studies on Hydrofoils for Marine Current Turbines
,”
Renewable Energy
,
42
, pp.
173
179
. 10.1016/j.renene.2011.07.048
4.
Gao
,
L.
,
Zhang
,
H.
,
Liu
,
Y.
, and
Han
,
S.
,
2015
, “
Effects of Vortex Generators on a Blunt Trailing-Edge Airfoil for Wind Turbines
,”
Renewable Energy
,
76
, pp.
303
311
. 10.1016/j.renene.2014.11.043
5.
Mueller-Vahl
,
H.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2012
, “
Vortex Generators for Wind Turbine Blades: A Combined Wind Tunnel and Wind Turbine Parametric Study
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, pp.
899
914
.
6.
Gad-el-Hak
,
M.
,
2007
,
Flow Control: Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
UK
.
7.
Prandtl
,
L.
,
1952
,
Essentials of Fluid Dynamics
,
Blackie and Son
,
London
.
8.
Lachmann
,
G. V
,
1961
,
Boundary Layer and Flow Control: Its Principles and Application
, vol.
2
, 1st ed.,
Pergamon Press
,
Oxford, UK
.
9.
Chang
,
P. K.
,
1970
,
Separation of Flow
,
Pergamon Press
,
Oxford, England
.
10.
Delery
,
J. M.
,
1985
, “
Shock Wave/Turbulent Boundary Layer Interaction and Its Control
,”
Progress Aerosp. Sci.
,
22
(
4
), pp.
209
280
. 10.1016/0376-0421(85)90001-6
11.
Viswanath
,
P. R.
,
1988
, “
Shock-Wave-Turbulent-Boundary-Layer Interaction and Its Control: A Survey of Recent Developments
,”
Sadhana
,
12
(
1–2
), pp.
45
104
. 10.1007/BF02745660
12.
Simpson
,
R. L.
,
1989
, “
Turbulent Boundary-Layer Separation
,”
Annu. Rev. Fluid Mech.
,
21
(
1
), pp.
205
232
. 10.1146/annurev.fl.21.010189.001225
13.
Gad-el-Hak
,
M.
,
1989
, “
Flow Control
,”
ASME Appl. Mech. Rev.
,
42
(
10
), pp.
261
292
. 10.1115/1.3152376
14.
Karthikeyan
,
N.
,
Murugavel
,
K. K.
,
Kumar
,
S. A.
, and
Rajakumar
,
S.
,
2015
, “
Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
801
822
. 10.1016/j.rser.2014.10.086
15.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Progress Aerosp. Sci.
,
36
(
7
), pp.
487
545
. 10.1016/S0376-0421(00)00008-7
16.
Stanewsky
,
E.
,
2001
, “
Adaptive Wing and Flow Control Technology
,”
Progress Aerosp. Sci.
,
37
(
7
), pp.
583
667
. 10.1016/S0376-0421(01)00017-3
17.
Ashill
,
P. R.
,
Fulker
,
J. L.
, and
Hackett
,
K. C.
,
2005
, “
A Review of Recent Developments in Flow Control
,”
Aeronaut. J.
,
109
(
1095
), pp.
205
232
. 10.1017/S0001924000005200
18.
Viswanath
,
P. R.
,
2007
, “
Some Thoughts on Separation Control Strategies
,”
Sadhana
,
32
(
1–2
), pp.
83
92
. 10.1007/s12046-007-0007-9
19.
Taylor
,
H. D.
,
1947
,
The Elimination of Diffuser Separation by Vortex Generators
,
United Aircraft Corporation
,
East Hartford, CT
, Technical Report No. 4012, 3.
20.
Ackeret
,
J.
,
Betz
,
A.
, and
Schrenk
,
O.
,
1926
, “
Experiments With an Airfoil From Which the Boundary Layer is Removed by Suction
,”
Vorlaufige Mittleilungen der Aerodynamischen Versuchsanstalt zu Gottingen, NASA NACA-TM-374
.
21.
Wygnanski
,
I.
, and
Newman
,
B. G.
,
1964
, “
The Effect of Jet Entrainment on Lift and Moment for a Thin Aerofoil With Blowing
,”
Aeronaut. Q.
,
15
(
2
), pp.
122
150
. 10.1017/S0001925900003085
22.
Bearman
,
P. W.
,
1967
, “
The Effect of Base Bleed on the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge
,”
Aeronaut. Q.
,
18
(
3
), pp.
207
224
. 10.1017/S0001925900004212
23.
Roshko
,
A.
,
1954
, “
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
,”
NACA TN 3169
.
24.
Bearman
,
P. W.
,
1965
, “
Investigation of the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge and Fitted With Splitter Plates
,”
J. Fluid Mech.
,
21
(
2
), pp.
241
255
. 10.1017/S0022112065000162
25.
Rao
,
D.
, and
Kariya
,
T.
,
1988
, “
Boundary-layer Submerged Vortex Generators for Separation Control—An Exploratory Study
,”
1st National Fluid Dynamics Conference, The American Institute of Aeronautics and Astronautics, Inc.
,
Cincinnati, OH
,
July 25–28
, pp.
839
846
.
26.
Lin
,
J.
,
Howard
,
F.
, and
Selby
,
G.
,
1991
, “
Exploratory Study of Vortex-Generating Devices for Turbulent Flow Separation Control
,”
29th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 7–10
, p.
42
.
27.
Lin
,
J.
,
1999
, “
Control of Turbulent Boundary-Layer Separation Using Micro-Vortex Generators
,”
30th AIAA Fluid Dynamics Conference
,
Norfolk, VA
,
June 28—July 1
, p.
3404
.
28.
Lu
,
F.
,
Li
,
Q.
,
Shih
,
Y.
,
Pierce
,
A.
, and
Liu
,
C.
,
2011
, “
Review of Micro Vortex Generators in High-Speed Flow
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
, p.
31
.
29.
Hansen
,
M. O. L.
,
Velte
,
C. M.
,
Øye
,
S.
,
Hansen
,
R.
,
Sørensen
,
N. N.
,
Madsen
,
J.
, and
Mikkelsen
,
R.
,
2016
, “
Aerodynamically Shaped Vortex Generators
,”
Wind Energy
,
19
(
3
), pp.
563
567
. 10.1002/we.1842
30.
Fuglsang
,
P.
,
Antoniou
,
I.
,
Dahl
,
K. S.
, and
Aagaard Madsen
,
H.
,
1998
,
Wind Tunnel Tests of the FFA-W3-241, FFA-W3-301 and NACA 63-430 Airfoils
,
Forskningscenter Risoe
,
Denmark
, Risoe-R, No. 1041(EN).
31.
Fuglsang
,
P.
,
Bak
,
C.
,
Gaunaa
,
M.
, and
Antoniou
,
I.
,
2003
,
Wind Tunnel Tests of Risø-B1-18 and Risø-B1-24
,
Forskningscenter Risoe
,
Denmark
, Risoe-R, No. 1375(EN).
32.
Timmer
,
W. A.
,
2003
, “
Summary of the Delft University Wind Turbine Dedicated Airfoils
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
488
496
. 10.1115/1.1626129
33.
Wang
,
H.
,
Zhang
,
B.
,
Qui
,
Q.
, and
Xu
,
X.
,
2017
, “
Flow Control on the S809 Wind Turbine Airfoil Using Vortex Generators
,”
Energy
,
118
, pp.
1210
1221
. 10.1016/j.energy.2016.11.003
34.
Fouatih
,
O. M.
,
Imine
,
B.
, and
Medale
,
M.
,
2019
, “
Numerical/Experimental Investigations on Reducing Drag Penalty of Passive Vortex Generators on a NACA 4415 Airfoil
,”
Wind Energy
,
22
(
7
), pp.
1003
1017
.
35.
Kundu
,
P.
,
Sarkar
,
A.
, and
Nagarajan
,
V.
,
2019
, “
Improvement of Performance of S1210 Hydrofoil With Vortex Generators and Modified Trailing Edge
,”
Renewable Energy
,
142
, pp.
643
657
. 10.1016/j.renene.2019.04.148
36.
Manolesos
,
M.
, and
Voutsinas
,
S. G.
,
2015
, “
Experimental Investigation of the Flow Past Passive Vortex Generators on an Airfoil Experiencing Three-Dimensional Separation
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
130
148
. 10.1016/j.jweia.2015.03.020
37.
Weick
,
F. E.
, and
Shortal
,
J. A.
,
1933
,
The Effect of Multiple Fixed Slots and a Trailing-Edge Flap on the Lift and Drag of a Clark Y Airfoil, Report No. 427
,
National Advisory Committee for Aeronautics, Navy Building
,
Washington, DC
.
38.
Narsipur
,
S.
,
Pomeroy
,
B.
, and
Selig
,
M.
,
2012
, “
CFD Analysis of Multielement Airfoils for Wind Turbines
,”
30th AIAA Applied Aerodynamics Conference
,
New Orleans, LA
,
June 25–28
, p.
2781
.
39.
Ragheb
,
A.
, and
Selig
,
M.
,
2011
, “
Multi-element Airfoil Configurations for Wind Turbines
,”
29th AIAA Applied Aerodynamics Conference
,
Honolulu, Hawaii
,
June 27–30
, p.
3971
.
40.
Belamadi
,
R.
,
Djemili
,
A.
,
Ilinca
,
A.
, and
Mdouki
,
R.
,
2016
, “
Aerodynamic Performance Analysis of Slotted Airfoils for Application to Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
151
, pp.
79
99
. 10.1016/j.jweia.2016.01.011
41.
Shehata
,
A. S.
,
Xiao
,
Q.
,
Selim
,
M. M.
,
Elbatran
,
A. H.
, and
Alexander
,
D.
,
2017
, “
Enhancement of Performance of Wave Turbine During Stall Using Passive Flow Control: First and Second Law Analysis
,”
Renewable Energy
,
113
, pp.
369
392
. 10.1016/j.renene.2017.06.008
42.
Rossow
,
V. J.
,
1978
, “
Lift Enhancement by an Externally Trapped Vortex
,”
J. Aircr.
,
15
(
9
), pp.
618
625
. 10.2514/3.58416
43.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. IV. Aerodynamic Mechanisms
,”
Philos. Trans. R. Soc. Lond. B, Biol. Sci.
,
305
(
1122
), pp.
79
113
. 10.1098/rstb.1984.0052
44.
Saffman
,
P. G.
, and
Sheffield
,
J. S.
,
1977
, “
Flow Over a Wing With an Attached Free Vortex
,”
Stud. Appl. Math.
,
57
(
2
), pp.
107
117
. 10.1002/sapm1977572107
45.
Wang
,
Z.
,
Gursul
,
I.
, and
Wu
,
J.
,
2015
, “
Post-Stall Lift Enhancement of a Flat Plate Airfoil by Suction
,”
53rd AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 5–9
, p.
1269
.
46.
Chen
,
C.
,
Seele
,
R.
, and
Wygnanski
,
I.
,
2013
, “
Flow Control on a Thick Airfoil Using Suction Compared to Blowing
,”
AIAA J.
,
51
(
6
), pp.
1462
1472
. 10.2514/1.J052098
47.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, p.
439
.
48.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
. 10.1016/0045-7825(74)90029-2
49.
Bradshaw
,
P.
,
1971
,
An Introduction to Turbulence and its Measurement
,
Pergamon Press
,
Oxford, UK
.
50.
Menter
,
F.
,
1993
, “
Zonal two-Equation k-ω Turbulence Models for Aerodynamic Flows
,”
24th AIAA Fluid Dynamics Conference
,
Orlando, FL
,
July 6–9
, p.
2906
.
51.
Godard
,
G.
, and
Stanislas
,
M.
,
2006
, “
Control of a Decelerating Boundary Layer. Part 1: Optimization of Passive Vortex Generators
,”
Aerosp. Sci. Technol.
,
10
(
3
), pp.
181
191
. 10.1016/j.ast.2005.11.007
52.
Yang
,
K.
,
Zhang
,
L.
, and
Xu
,
J.
,
2010
, “
Simulation of Aerodynamic Performance Affected by Vortex Generators on Blunt Trailing-Edge Airfoils
,”
Sci. China Ser. E: Technol. Sci.
,
53
(
1
), pp.
1
7
. 10.1007/s11431-009-0425-5
53.
Ashill
,
P.
,
Fulker
,
J.
, and
Hackett
,
K.
,
2001
, “
Research at DERA on Sub Boundary Layer Vortex Generators (SBVGs)
,”
39th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, p.
887
.
54.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
, pp.
172
180
.
55.
Fluent, ANSYS 15.0 User’s Manual, ANSYS Documentation N Fluent N User’s Guide & Theory Guide—Release 15.0
.
ANSYS Inc
.
56.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
27th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
, p.
366
.
57.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
J. Fluid Eng.
,
116
(
3
), pp.
405
413
. 10.1115/1.2910291
58.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
. 10.2514/2.457
59.
Examining Spatial (Grid) Convergence
,” https://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html. Accessed Dec. 27, 2019.
60.
Richardson
,
L. F.
,
1911
, “
IX. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
210
(
459–470
), pp.
307
357
.
You do not currently have access to this content.