Abstract

The negative effect of biofouling on ship resistance has been investigated since the early days of naval architecture. However, for more precise prediction of fuel consumption of ships, understanding the effect of biofouling on ship propulsion performance is also important. In this study, computational fluid dynamics (CFD) simulations for the full-scale performance of KP505 propeller in open water, including the presence of marine biofouling, were conducted. To predict the effect of barnacle fouling on the propeller performance, experimentally obtained roughness functions of barnacle fouling were used in the wall-function of the CFD software. The roughness effect of barnacles of varying sizes and coverages on the propeller open water performance was predicted for advance coefficients ranging from 0.2 to 0.8. From the simulations, drastic effects of barnacle fouling on the propeller open water performance were found. The result suggests that the thrust coefficient decreases while the torque coefficient increases with increasing level of surface fouling, which leads to a reduction of the open water efficiency of the propeller. Using the obtained result, the penalty of propeller fouling on the required shaft power was predicted. Finally, further investigations were made into the roughness effect on the flow characteristics around the propeller and the results were in correspondence with the findings on the propeller open water performance.

References

1.
Townsin
,
R. L.
,
2003
, “
The Ship Hull Fouling Penalty
,”
Biofouling
,
19
(
suppl. 1
), pp.
9
15
. 10.1080/0892701031000088535
2.
McEntee
,
W.
,
1915
, “
Variation of Frictional Resistance of Ships With Condition of Wetted Surface
,”
Trans. Soc. Nav. Arch. Mar. Eng.
,
24
, pp.
37
42
.
3.
Kempf
,
G.
,
1937
, “
On the Effect of Roughness on the Resistance of Ships
,”
Trans. INA
,
79
, pp.
109
119
.
4.
Benson
,
J.
,
Ebert
,
J.
, and
Beery
,
T.
,
1938
, “
Investigation in the NACA Tank for the Effect of Immersion in Salt Water on the Resistance of Plates Coated With Different Ship Bottom Paints
,”
Na.A.C.A. Memorandum Report
, C&R C-S19-1(3).
5.
Watanabe
,
S.
,
Nagmatsu
,
N.
,
Yokoo
,
K.
, and
Kawakami
,
Y.
,
1969
, “
The Augmentation in Frictional Resistance Due to Slime
,”
J. Kansai Soc. Nav. Arc.
,
131
, pp.
45
51
.
6.
Leer-Andersen
,
M.
, and
Larsson
,
L.
,
2003
, “
An Experimental/Numerical Approach for Evaluating Skin Friction on Full-Scale Ships With Surface Roughness
,”
J. Mar. Sci. Technol.
,
8
(
1
), pp.
26
36
. 10.1007/s10773-003-0150-y
7.
Candries
,
M.
,
Atlar
,
M.
,
Mesbahi
,
E.
, and
Pazouki
,
K.
,
2003
, “
The Measurement of the Drag Characteristics of Tin-Free Self-polishing Co-polymers and Fouling Release Coatings Using a Rotor Apparatus
,”
Biofouling
,
19
(Suppl.) 10.1080/0892701021000026138
8.
Candries
,
M.
, and
Atlar
,
M.
,
2005
, “
Experimental Investigation of the Turbulent Boundary Layer of Surfaces Coated With Marine Antifoulings
,”
ASME J. Fluid. Eng.
,
127
(
2
), pp.
219
232
. 10.1115/1.1891148
9.
Schultz
,
M. P.
,
2004
, “
Frictional Resistance of Antifouling Coating Systems
,”
ASME J. Fluid. Eng.
,
126
(
6
), pp.
1039
1047
. 10.1115/1.1845552
10.
Schultz
,
M. P.
,
2007
, “
Effects of Coating Roughness and Biofouling on Ship Resistance and Powering
,”
Biofouling
,
23
(
5
), pp.
331
341
. 10.1080/08927010701461974
11.
Schultz
,
M. P.
,
Walker
,
J. M.
,
Steppe
,
C. N.
, and
Flack
,
K. A.
,
2015
, “
Impact of Diatomaceous Biofilms on the Frictional Drag of Fouling-Release Coatings
,”
Biofouling
,
31
(
9–10
), pp.
759
773
. 10.1080/08927014.2015.1108407
12.
Demirel
,
Y. K.
,
Khorasanchi
,
M.
,
Turan
,
O.
,
Incecik
,
A.
, and
Schultz
,
M. P.
,
2014
, “
A CFD Model for the Frictional Resistance Prediction of Antifouling Coatings
,”
Ocean Eng.
,
89
, pp.
21
31
. 10.1016/j.oceaneng.2014.07.017
13.
Demirel
,
Y. K.
,
2015
, “
Modelling the Roughness Effects of Marine Coatings and Biofouling on Ship Frictional Resistance
,”
(Ph.D.)
,
University of Strathclyde
,
Glasgow
.
14.
Demirel
,
Y. K.
,
Uzun
,
D.
,
Zhang
,
Y.
,
Fang
,
H.-C.
,
Day
,
A. H.
, and
Turan
,
O.
,
2017
, “
Effect of Barnacle Fouling on Ship Resistance and Powering
,”
Biofouling
,
33
(
10
), pp.
819
834
. 10.1080/08927014.2017.1373279
15.
Demirel
,
Y. K.
,
Turan
,
O.
, and
Incecik
,
A.
,
2017
, “
Predicting the Effect of Biofouling on Ship Resistance Using CFD
,”
Appl. Ocean Res.
,
62
, pp.
100
118
. 10.1016/j.apor.2016.12.003
16.
Song
,
S.
,
Demirel
,
Y. K.
, and
Atlar
,
M.
,
2019
, “
An Investigation Into the Effect of Biofouling on the Ship Hydrodynamic Characteristics Using CFD
,”
Ocean Eng.
,
175
, pp.
122
137
. 10.1016/j.oceaneng.2019.01.056
17.
Demirel
,
Y. K.
,
Song
,
S.
,
Turan
,
O.
, and
Incecik
,
A.
,
2019
, “
Practical Added Resistance Diagrams to Predict Fouling Impact on Ship Performance
,”
Ocean Eng.
,
186
, p.
106112
. 10.1016/j.oceaneng.2019.106112
18.
Uzun
,
D.
,
Demirel
,
Y. K.
,
Coraddu
,
A.
, and
Turan
,
O.
,
2019
, “
Time-dependent Biofouling Growth Model for Predicting the Effects of Biofouling on Ship Resistance and Powering
,”
Ocean Eng.
,
191
, p.
106432
. 10.1016/j.oceaneng.2019.106432
19.
Song
,
S.
,
Demirel
,
Y. K.
, and
Atlar
,
M.
,
2020
, “
Penalty of Hull and Propeller Fouling on Ship Self-Propulsion Performance
,”
Appl. Ocean Res.
,
94
, p.
102006
. 10.1016/j.apor.2019.102006
20.
Farkas
,
A.
,
Song
,
S.
,
Degiuli
,
N.
,
Martić
,
I.
, and
Demirel
,
Y. K.
,
2020
, “
Impact of Biofilm on the Ship Propulsion Characteristics and the Speed Reduction
,”
Ocean Eng.
,
199
, p.
107033
. 10.1016/j.oceaneng.2020.107033
21.
Uzun
,
D.
,
Ozyurt
,
R.
,
Demirel
,
Y. K.
, and
Turan
,
O.
,
2020
, “
Does the Barnacle Settlement Pattern Affect Ship Resistance and Powering?
,”
Appl. Ocean Res.
,
95
, p.
102020
. 10.1016/j.apor.2019.102020
22.
Gowing
,
S.
,
Chang
,
P.
,
Dehn
,
C.
, and
Storms
,
S.
,
2018
, “
Measurements of Biofouling Drag Using a 2-D Channel Flow Apparatus With Models of Bio-Fouled Panels
,”
19th International Congress on Marine Corrosion and Fouling
,
Melbourne, FL
,
June 19–24
.
23.
Womack
,
K. M.
,
Schultz
,
M. P.
, and
Meneveau
,
C.
,
2018
, “
Effect of Barnacle Density on Hydrodynamic Drag
,”
19th International Congress on Marine Corrosion and Fouling
,
Melbourne, FL
,
June 19–24
.
24.
McEntee
,
W.
,
1916
, “
Notes From Model Basin, Transactions of the Society of Naval Architects and Marine Engineers
,”
Trans. Soc. Nav. Arch. and Mar. Eng.
,
24
, p.
85
.
25.
Bengough
,
G. D.
, and
Shepheard
,
V. G.
,
1943
, “
The Corrosion and Fouling of Ships
,”
Jour. Inst. Iron & Steel
,
147
, pp.
339
451
.
26.
Redfield
,
A. C.
,
Hutchins
,
L. W.
,
Redfield
,
A. C.
,
Deevy
,
E. S.
, Jr.
,
Ayers
,
J. C.
,
Turner
,
H. J.
, and
Todd
,
D.
,
1952
,
Marine Fouling and Its Prevention, US
.
Naval Institute Press
,
Annapolis, MD
.
27.
Taylor
,
D. W.
,
1943
,
The Speed and Power of Ships: A Manual of Marine Propulsion
,
G.P.O.
,
Washington: U.S.
28.
Mosaad
,
M. A. A.-R.
,
1986
, “
Marine Propeller Roughness Penalties
,”
(Ph.D.)
,
Newcastle University
,
Newcastle Upon Tyne
.
29.
Mutton
,
R. J.
,
Atlar
,
M.
, and
Anderson
,
C. D.
,
2005
, “
Drag Prevention Coatings for Marine Propellers
,”
2nd International Symposium on Seawater Drag Reduction
,
Busan, Korea
,
May 23–26
.
30.
Korkut
,
E.
, and
Atlar
,
M.
,
2012
, “
An Experimental Investigation of the Effect of Foul Release Coating Application on Performance, Noise and Cavitation Characteristics of Marine Propellers
,”
Ocean Eng.
,
41
, pp.
1
12
. 10.1016/j.oceaneng.2011.12.012
31.
Franzini
,
J.
,
1997
,
Fluid Mechanics With Engineering Applications
, 9th ed.,
McGraw-Hill
,
New York
.
32.
Granville
,
P. S.
,
1958
, “
The Frictional Resistance and Turbulent Boundary Layer of Rough Surfaces
,”
J. Ship Res.
,
2
(
3
), pp.
52
74
.
33.
Granville
,
P. S.
,
1987
, “
Three Indirect Methods for the Drag Characterization of Arbitrarily Rough Surfaces on Flat Plates
,”
J. Ship Res.
,
31
(
1
), p.
8
.
34.
Atlar
,
M.
,
Glover
,
E. J.
,
Candries
,
M.
,
Mutton
,
R. J.
, and
Anderson
,
C. D.
,
2002
, “
The Effect of a Foul Release Coating on Propeller Performance
,”
Marine Science and Technology for Environmental Sustainability
,
Newcastle upon Tyne, UK
,
Dec. 16–19
.
35.
Seo
,
K.-C.
,
Atlar
,
M.
, and
Goo
,
B.
,
2016
, “
A Study on the Hydrodynamic Effect of Biofouling on Marine Propeller
,”
J. Korean Soc. Mar. Environ. Energy
,
22
(
1
), pp.
123
128
. 10.7837/kosomes.2016.22.1.123
36.
Atlar
,
M.
,
Yeginbayeva
,
I. A.
,
Turkmen
,
S.
,
Demirel
,
Y. K.
,
Carchen
,
A.
,
Marino
,
A.
, and
Williams
,
D.
,
2018
, “
A Rational Approach to Predicting the Effect of Fouling Control Systems on “In-Service” Ship Performance
,”
GMO J. Ship Mar. Technol.
,
24
(
213
), pp.
5
36
.
37.
Song
,
S.
,
Demirel
,
Y. K.
,
Atlar
,
M.
,
Dai
,
S.
,
Day
,
S.
, and
Turan
,
O.
,
2020
, “
Validation of the CFD Approach for Modelling Roughness Effect on Ship Resistance
,”
Ocean Eng.
,
200
, p.
107029
. 10.1016/j.oceaneng.2020.107029
38.
Song
,
S.
,
Dai
,
S.
,
Demirel
,
Y. K.
,
Atlar
,
M.
,
Day
,
S.
, and
Turan
,
O.
,
2020
, “
Experimental and Theoretical Study of the Effect of Hull Roughness on Ship Resistance
,”
J. Ship Res.
39.
Owen
,
D.
,
Demirel
,
Y. K.
,
Oguz
,
E.
,
Tezdogan
,
T.
, and
Incecik
,
A.
,
2018
, “
Investigating the Effect of Biofouling on Propeller Characteristics Using CFD
,”
Ocean Eng.
,
159
, pp.
505
516
. 10.1016/j.oceaneng.2018.01.087
40.
Fujisawa
,
J.
,
Ukon
,
Y.
,
Kume
,
K.
, and
Takeshi
,
H.
,
2000
,
Local Velocity Field Measurements Around the KCS Model
, SPR Report No. 00-003-2,
Ship Research Institute
Japan, Tokyo
.
41.
Clauser
,
F. H.
,
1954
, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
,
21
(
2
), pp.
91
108
. 10.2514/8.2938
42.
Grigson
,
C.
,
1992
, “
Drag Losses of new Ships Caused by Hull Finish
,”
J. Ship Res.
,
36
(
2
), pp.
182
196
.
43.
Siemens
,
2018
, STAR-CCM+, https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html, Accessed 1 February, 2019.
44.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin Heidelberg
.
45.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 10.2514/3.12149
46.
Luo
,
J. Y.
,
Issa
,
R. I.
, and
Gosman
,
A. D.
,
1994
, “
Prediction of Impeller Induced Flows in Mixing Vessels Using Multiple Frames of Reference
,”
8th European Conference on Mixing; Institution of Chemical Engineers Symposium Series
,
Cambridge, UK
,
Sept. 21–23
.
47.
Mizzi
,
K.
,
Demirel
,
Y. K.
,
Banks
,
C.
,
Turan
,
O.
,
Kaklis
,
P.
, and
Atlar
,
M.
,
2017
, “
Design Optimisation of Propeller Boss Cap Fins for Enhanced Propeller Performance
,”
Appl. Ocean Res.
,
62
, pp.
210
222
. 10.1016/j.apor.2016.12.006
48.
CD-Adapco
,
2017
, STAR-CCM+ User Guide, Version 12.06.
49.
Richardson
,
L. F.
,
1910
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Proc. R. Soc. London, Ser. A
,
210
, pp.
307
357
.
50.
Terziev
,
M.
,
Tezdogan
,
T.
,
Oguz
,
E.
,
Gourlay
,
T.
,
Demirel
,
Y. K.
, and
Incecik
,
A.
,
2018
, “
Numerical Investigation of the Behaviour and Performance of Ships Advancing Through Restricted Shallow Waters
,”
J. Fluids Struct.
,
76
, pp.
185
215
. 10.1016/j.jfluidstructs.2017.10.003
51.
Terziev
,
M.
,
Tezdogan
,
T.
, and
Incecik
,
A.
,
2019
, “
Application of Eddy-Viscosity Turbulence Models to Problems in Ship Hydrodynamics
,”
Ships Offshore Struct.
, pp.
1
24
. 10.1080/17445302.2019.1661625
52.
Terziev
,
M.
,
Tezdogan
,
T.
, and
Incecik
,
A.
,
2019
, “
A Geosim Analysis of Ship Resistance Decomposition and Scale Effects With the Aid of CFD
,”
Appl. Ocean Res.
,
92
, p.
101930
. 10.1016/j.apor.2019.101930
53.
Terziev
,
M.
,
Zhao
,
G.
,
Tezdogan
,
T.
,
Yuan
,
Z.
, and
Incecik
,
A.
,
2020
, “
Virtual Replica of a Towing Tank Experiment to Determine the Kelvin Half-Angle of a Ship in Restricted Water
,”
J. Mar. Sci. Eng.
,
8
(
4
), pp.
258
. 10.3390/jmse8040258
54.
Celik
,
I. B.
,
Ghia.
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
J. Fluid. Eng.
,
130
(
7
), pp.
078001
. 10.1115/1.2960953
55.
Castro
,
A. M.
,
Carrica
,
P. M.
, and
Stern
,
F.
,
2011
, “
Full Scale Self-Propulsion Computations Using Discretized Propeller for the KRISO Container Ship KCS
,”
Comput. Fluids
,
51
(
1
), pp.
35
47
. 10.1016/j.compfluid.2011.07.005
You do not currently have access to this content.