Abstract

During a ship life cycle, one of the most critical phases in terms of safety refers to harbor maneuvers, which take place in restricted and congested waters, leading to higher collision and grounding risks in comparison to open sea navigation. In this scenario, a single accident may stop the harbor's traffic as well as incur in patrimonial damage, environmental pollution, human casualties, and reputation losses. In order to support the vessel's captain during the maneuver, local experienced maritime pilots stay on board coordinating the ship navigation while in restricted waters. Aiming to assess the main factors contributing to human errors in pilot-assisted harbor ship maneuvers, this work proposes a Bayesian network model for human reliability analysis (HRA), supported by a prospective human performance model for quantification. The novelty of this work resides into two aspects: (a) incorporation of harbor specific conditions for maritime navigation HRA, including the performance of ship's crew and maritime pilots and (b) the use of a prospective human performance model as an alternative to expert's opinion for quantification purposes. To illustrate the usage of the proposed methodology, this paper presents an analysis of the route keeping task along waterways, starting from the quantification of human error probabilities (HEP) and including the ranking of the main performance shaping factors that contribute to the HEP.

References

1.
Kristiansen
,
S.
,
2005
,
Maritime Transportation: Safety Management and Risk Analysis
,
Elsevier Butterworth-Heinemann
,
Oxford
.
2.
IMO
,
1968
, “
Recommendation on Pilotage Resolution A.159 (ES.IV)
”.
3.
IMO
,
2018
, “
MSC-MEPC. 2/Circ. 12/Rev. 2 Revised Guidelines for Formal Safety Assessment (FSA) for Use in the IMO Rule-Making Process
”.
4.
Mkrtchyan
,
L.
,
Podofillini
,
L.
, and
Dang
,
V. N.
,
2015
, “
Bayesian Belief Networks for Human Reliability Analysis : A Review of Applications and Gaps
,”
Reliab. Eng. Syst. Saf.
,
139
, pp.
1
16
. 10.1016/j.ress.2015.02.006
5.
Martins
,
M. R.
, and
Maturana
,
M. C.
,
2010
, “
Human Error Contribution in Collision and Grounding of Oil Tankers
,”
Risk Anal.
,
30
(
4
), pp.
674
698
. 10.1111/j.1539-6924.2010.01392.x
6.
Martins
,
M. R.
, and
Maturana
,
M. C.
,
2013
, “
Application of Bayesian Belief Networks to the Human Reliability Analysis of an Oil Tanker Operation Focusing on Collision Accidents
,”
Reliab. Eng. Syst. Saf.
,
110
, pp.
89
109
. 10.1016/j.ress.2012.09.008
7.
Sotiralis
,
P.
,
Ventikos
,
N. P.
,
Hamann
,
R.
,
Golyshev
,
P.
, and
Teixeira
,
A. P.
,
2016
, “
Incorporation of Human Factors Into Ship Collision Risk Models Focusing on Human Centred Design Aspects
,”
Reliab. Eng. Syst. Saf.
,
156
, pp.
210
227
. 10.1016/j.ress.2016.08.007
8.
Abílio Ramos
,
M.
,
Droguett
,
E. L.
,
Mosleh
,
A.
,
das Chagas Moura
,
M.
, and
Ramos Martins
,
M.
,
2017
, “
Revisiting Past Refinery Accidents From a Human Reliability Analysis Perspective: The BP Texas City and the Chevron Richmond Accidents
,”
Can. J. Chem. Eng.
,
95
(
12
), pp.
2293
2305
. 10.1002/cjce.22996
9.
Maturana
,
M. C.
, and
Martins
,
M. R.
,
2019
, “
Technique for Early Consideration of Human Reliability: Applying a Generic Model in an Oil Tanker Operation to Study Sacenarios of Collision
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051607
. 10.1115/1.4043414
10.
Bayma
,
A.
, and
Martins
,
M. R.
,
2017
, “Human Reliability Analysis in the Emergency Evacuation From an Aircraft,”
Safety and Reliability—Theory and Applications
,
M.
Čepin
, and
R.
Briš
, eds.,
Taylor & Francis Group
,
London
, pp.
305
312
.
11.
Bandeira
,
M. C. G. S. P.
,
Correia
,
A. R.
, and
Martins
,
M. R.
,
2017
, “
Method for Measuring Factors That Affect the Performance of Pilots
,”
Transportes
,
25
(
2
), p.
156
. 10.14295/transportes.v25i2.1374
12.
Bandeira
,
M. C. G. S. P.
,
Correia
,
A. R.
, and
Martins
,
M. R.
,
2018
, “
General Model Analysis of Aeronautical Accidents Involving Human and Organizational Factors
,”
J. Air Transp. Manag.
,
69
, pp.
137
146
. 10.1016/j.jairtraman.2018.01.007
13.
Droguett
,
E. L.
, and
Menêzes
,
R. d. C. S.
,
2007
, “
Human Reliability Analysis Through Bayesian Networks: An Application in Maintenance of Transmission Lines
,”
Producao
,
17
(
1
), pp.
162
185
. 10.1590/S0103-65132007000100012
14.
Ramos
,
M. A.
,
Utne
,
I. B.
, and
Mosleh
,
A.
,
2019
, “
Collision Avoidance on Maritime Autonomous Surface Ships: Operators’ Tasks and Human Failure Events
,”
Saf. Sci.
,
116
, pp.
33
44
. 10.1016/j.ssci.2019.02.038
15.
Emstsen
,
J.
,
Nazir
,
S.
, and
Roed
,
B. K.
,
2017
, “
Human Reliability Analysis of a Pilotage Operation
,”
Saf. Sea Transp.—Proc. Int. Conf. Mar. Navig. Saf. Sea Transp. TRANSNAV 2017
,
June 2017
, pp.
295
300
.
16.
Marcot
,
B. G.
,
2012
, “
Metrics for Evaluating Performance and Uncertainty of Bayesian Network Models
,”
Ecol. Modell.
,
230
, pp.
50
62
. 10.1016/j.ecolmodel.2012.01.013
17.
Hoshino
,
E.
,
Vanputten
,
I.
,
Girsang
,
W.
,
Resosudarmo
,
B. P.
, and
Yamazaki
,
S.
,
2016
, “
A Bayesian Belief Network Model for Community-Based Coastal Resource Management in the Kei Islands, Indonesia
,”
Ecol. Soc.
,
21
(
2
), pp.
1
12
. 10.5751/ES-08285-210216
18.
Annett
,
J.
,
2003
, “Hierarchical Task Analysis,”
Handbook of Cognitive Task Design
,
E
Hollnagel
, ed.,
Lawrence Erlbaum Associates, Inc.
,
Mahwah, NJ
, pp.
17
36
.
19.
Martins
,
M. R.
,
Schleder
,
A. M.
, and
Droguett
,
E. L.
,
2014
, “
A Methodology for Risk Analysis Based on Hybrid Bayesian Networks: Application to the Regasification System of Liquefied Natural Gas Onboard a Floating Storage and Regasification Unit
,”
Risk Anal.
,
34
(
12
), pp.
2098
2120
. 10.1111/risa.12245
20.
French
,
S.
,
2009
, “
Human Reliability Analysis: A Review and Critique
,”
Manchester Bus. Sch. Work. Pap. Number 589
.
21.
Fan
,
S.
,
Zhang
,
J.
,
Blanco-Davis
,
E.
,
Yang
,
Z.
,
Wang
,
J.
, and
Yan
,
X.
,
2018
, “
Effects of Seafarers’ Emotion on Human Performance Using Bridge Simulation
,”
Ocean Eng.
,
170
, pp.
111
119
. 10.1016/j.oceaneng.2018.10.021
22.
Musharraf
,
M.
,
Hassan
,
J.
,
Khan
,
F.
,
Veitch
,
B.
,
MacKinnon
,
S.
, and
Imtiaz
,
S.
,
2013
, “
Human Reliability Assessment During Offshore Emergency Conditions
,”
Saf. Sci.
,
59
, pp.
19
27
. 10.1016/j.ssci.2013.04.001
23.
Musharraf
,
M.
,
Bradbury-Squires
,
D.
,
Khan
,
F.
,
Veitch
,
B.
,
Mackinnon
,
S.
, and
Imtiaz
,
S.
,
2014
, “
A Virtual Experimental Technique for Data Collection for a Bayesian Network Approach to Human Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
132
, pp.
1
8
. 10.1016/j.ress.2014.06.016
24.
Musharraf
,
M.
,
Moyle
,
A.
,
Khan
,
F.
, and
Veitch
,
B.
,
2019
, “
Using Simulator Data to Facilitate Human Reliability Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
2
), p.
021607
.10.1115/1.4042538
25.
Prasad
,
M.
, and
Gaikwad
,
A. J.
,
2015
, “
Human Error Probability Estimation by Coupling Simulator Data and Deterministic Analysis
,”
Prog. Nucl. Energy
,
81
, pp.
22
29
. 10.1016/j.pnucene.2015.01.008
26.
Groth
,
K. M.
,
Smith
,
C. L.
, and
Swiler
,
L. P.
,
2014
, “
A Bayesian Method for Using Simulator Data to Enhance Human Error Probabilities Assigned by Existing HRA Methods
,”
Reliab. Eng. Syst. Saf.
,
128
, pp.
32
40
. 10.1016/j.ress.2014.03.010
27.
Li
,
S.
,
Meng
,
Q.
, and
Qu
,
X.
,
2012
, “
An Overview of Maritime Waterway Quantitative Risk Assessment Models
,”
Risk Anal.
,
32
(
3
), pp.
496
512
. 10.1111/j.1539-6924.2011.01697.x
You do not currently have access to this content.