Abstract

The fluid oscillation between the rigid wall and stratified wave absorber is analyzed in the context of the linearized water wave theory. The stratified wave absorber is composed of multiple horizontal layers considering higher porosity in the surface layer, moderate porosity in the middle layer, and zero porosity in the bottom layer. The study examined the wave motion through multiple horizontally stratified wave absorbers on solving the multilayer dispersion relation. The eigenfunction expansion method is used to form the system of analytical equations using the property of orthogonal mode-coupling relation with continuity of dynamic pressure and velocity at each of the interfaces. The free spacing available between leeward porous wave absorber and the rigid wall is termed as “trapping chamber.” The effect of the trapping chamber on wave reflection and fluid force experienced by a rigid wall is discussed. The analytical results formulated for the physical problem are validated with the available experimental and numerical results. The wave trapping is examined and compared for three types of seawalls such as vertical wall, permeable wall, and stepped wall. The change in trapping chamber length shows the harmonic peaks and troughs in the trapping coefficients and the harmonic oscillations help in the design and development of the stratified porous wave absorbers for the protection of marine infrastructure.

References

References
1.
Zhu
,
S.
, and
Chwang
,
A.
,
2002
, “
Experimental Studies on Caisson-Type Porous Seawalls
,”
Exp. Fluids
,
33
(
4
), pp.
512
515
. 10.1007/s00348-002-0444-5
2.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020a
, “
Significance of Seabed Characteristics on Wave Transformation in the Presence of Stratified Porous Block
,”
Coastal Eng. J.
,
62
(
1
), pp.
1
22
. 10.1080/21664250.2019.1676366
3.
Yu
,
X.
, and
Chwang
,
A. T.
,
1994
, “
Wave Motion Through Porous Structures
,”
J. Eng. Mech.
,
120
(
5
), pp.
989
1008
. 10.1061/(ASCE)0733-9399(1994)120:5(989)
4.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmission Through Permeable Breakwaters
,”
Coastal Eng. Proc.
, pp.
1827
1846
.
5.
Twu
,
S. W.
, and
Chieu
,
C. C.
,
2000
, “
A Highly Wave Dissipation Offshore Breakwater
,”
Ocean Eng.
,
27
(
3
), pp.
315
330
. 10.1016/S0029-8018(99)00002-5
6.
Liu
,
Y.
,
Li
,
Y.
, and
Teng
,
B.
,
2007
, “
Wave Interaction With a New Type Perforated Breakwater
,”
Acta Mech. Sin.
,
23
(
4
), pp.
351
358
. 10.1007/s10409-007-0086-1
7.
Lin
,
Q.
,
Meng
,
Q. R.
, and
Lu
,
D. Q.
,
2018
, “
Waves Propagating Over a Two-Layer Porous Barrier on a Seabed
,”
J. Hydrodyn.
,
30
(
3
), pp.
453
462
. 10.1007/s42241-018-0041-6
8.
Hu
,
J.
,
Zhao
,
Y.
, and
Liu
,
P. L. F.
,
2019
, “
A Model for Obliquely Incident Wave Interacting With a Multi-Layered Object
,”
Appl. Ocean Res.
,
87
, pp.
211
222
. 10.1016/j.apor.2019.03.004
9.
Madsen
,
P. A.
,
1983
, “
Wave Reflection From a Vertical Permeable Wave Absorber
,”
Coastal Eng.
,
7
(
4
), pp.
381
396
. 10.1016/0378-3839(83)90005-4
10.
Dalrymple
,
R. A.
,
Losada
,
M. A.
, and
Martin
,
P. A.
,
1991
, “
Reflection and Transmission From Porous Structures Under Oblique Wave Attack
,”
J. Fluid Mech.
,
224
, pp.
625
644
. 10.1017/S0022112091001908
11.
Losada
,
I. J.
,
Silva
,
R.
, and
Losada
,
M. A.
,
1996
, “
3-D Non-Breaking Regular Wave Interaction With Submerged Breakwaters
,”
Coastal Eng.
,
28
(
1–4
), pp.
229
248
. 10.1016/0378-3839(96)00019-1
12.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Wave Transformation Due to Barrier-Rock Porous Structure Placed on Step-Bottom
,”
Ships Offshore Struct.
10.1080/17445302.2019.1694296, in press.
13.
Twu
,
S. W.
, and
Liu
,
C. C.
,
2004
, “
Interaction of Non-Breaking Regular Waves With a Periodic Array of Artificial Porous Bars
,”
Coastal Eng.
,
51
(
3
), pp.
223
236
. 10.1016/j.coastaleng.2004.01.002
14.
Ding
,
W. W.
,
Zou
,
Z. J.
,
Wu
,
J. P.
, and
Huang
,
B. G.
,
2019
, “
Investigation of Surface-Piercing Fixed Structures With Different Shapes for Bragg Reflection of Water Waves
,”
Int. J. Nav. Archit. Ocean Eng.
,
11
(
2
), pp.
819
827
. 10.1016/j.ijnaoe.2019.03.006
15.
Vijay
,
K. G.
, and
Sahoo
,
T.
,
2019
, “
Scattering of Surface Gravity Waves by a Pair of Floating Porous Boxes
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
5
), p.
051803
. 10.1115/1.4043415
16.
Khan
,
M.
, and
Behera
,
H.
,
2020
, “
Analysis of Wave Action Through Multiple Submerged Porous Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
011101
. 10.1115/1.4044360
17.
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2015
, “
Propagation of Gravity Waves Past Multiple Bottom-Standing Barriers
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011101
. 10.1115/1.4027896
18.
Neelamani
,
S.
,
Al-Salem
,
K.
, and
Taqi
,
A.
,
2017
, “
Experimental Investigation on Wave Reflection Characteristics of Slotted Vertical Barriers With an Impermeable Back Wall in Random Wave Fields
,”
J. Waterw. Port Coastal Ocean Eng.
,
143
(
4
), p.
06017002
. 10.1061/(ASCE)WW.1943-5460.0000395
19.
Vijay
,
K. G.
,
Neelamani
,
S.
, and
Sahoo
,
T.
,
2019
, “
Wave Interaction With Multiple Slotted Barriers Inside Harbour: Physical and Numerical Modelling
,”
Ocean Eng.
,
193
(
106623
), pp.
1
10
. 10.1016/j.oceaneng.2019.106623
20.
Mendez
,
F. J.
, and
Losada
,
I. J.
,
2004
, “
A Perturbation Method to Solve Dispersion Equations for Water Waves Over Dissipative Media
,”
Coastal Eng.
,
51
(
1
), pp.
81
89
. 10.1016/j.coastaleng.2003.12.007
21.
Dattatri
,
J.
,
Raman
,
H.
, and
Shankar
,
N. J.
,
1978
, “
Performance Characteristics of Submerged Breakwaters
,”
Coastal Eng. Proc.
, pp.
2153
2171
.
22.
Zhu
,
S.
, and
Chwang
,
A. T.
,
2001
, “
Analytical Study of Porous Wave Absorber
,”
J. Eng. Mech.
,
127
(
4
), pp.
326
332
. 10.1061/(ASCE)0733-9399(2001)127:4(326)
23.
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2019
, “
Numerical Investigation on the Wave Dissipating Performance Due to Multiple Porous Structures
,”
ISH J. Hydraul. Eng.
, in press10.1080/09715010.2019.1615393.
24.
Manisha
,
Kaligatla
,
R. B.
, and
Sahoo
,
T.
,
2019
, “
Effect of Bottom Undulation for Mitigating Wave-Induced Forces on a Floating Bridge
,”
Wave Motion
,
89
, pp.
166
184
. 10.1016/j.wavemoti.2019.03.007
25.
Krecic
,
M. R.
, and
Sayao
,
O. J.
,
2003
, “
Wave Overtopping on Chicago Shoreline Revetment
,”
Proc. Coastal Struct. ASCE
, pp.
542
554
.
26.
Kerpen
,
N. B.
,
2017
, “
Wave-induced Responses of Stepped Revetments
,”
Doctoral dissertation
,
Gottfried Wilhelm Leibniz Universität Hannover
,
Hannover
.
27.
Maharashtra Shoreline Management Plan
,
2017
,
Individual Beach Assessments: Mumbai District, Maharashtra Maritime Board, Government of Maharashtra
,
Sanctuary Beach Pte. Ltd
.,
Singapore
.
28.
Ting
,
F. C.
, and
Kim
,
Y. K.
,
1994
, “
Vortex Generation in Water Waves Propagating Over a Submerged Obstacle
,”
Coastal Eng.
,
24
(
1–2
), pp.
23
49
. 10.1016/0378-3839(94)90025-6
You do not currently have access to this content.