Abstract

The hysteretic behavior of oscillating water column (OWC)-installed Wells turbines has been known for decades. The common explanation invokes the presence of unsteady aerodynamics due to the continuously varying incidence of the flow on the turbine blades. This phenomenon is neither new nor unique to Wells turbines, as an aerodynamic hysteresis is present in rapidly oscillating airfoils and wings, as well as in different types of turbomachinery, such as wind turbines and helicopter rotors, which share significant similarities with a Wells turbine. An important difference is the non-dimensional frequency: the hysteresis appears in oscillating airfoils only at frequencies orders of magnitude larger than the ones Wells turbines operate at. This work contains a re-examination of the phenomenon, using both computational fluid dynamics (CFD) and a lumped parameter model, and shows how the aerodynamic hysteresis in Wells turbines is negligible and how the often measured differences in performance between acceleration and deceleration are caused by the capacitive behavior of the OWC system. Results have been verified with respect to both spatial and temporal discretization, for unstalled and stalled operating conditions.

References

References
1.
Cruz
,
J.
,
2008
,
Ocean Wave Energy: Current Status and Future Perspectives
,
Springer
,
Berlin, Germany
.
2.
Falcão
,
A. F. O.
,
Henriques
,
J. C. C.
, and
Gato
,
M. C.
,
2018
, “
Self-Rectifying Air Turbines for Wave Energy Conversion: A Comparative Analysis
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
1231
1241
. 10.1016/j.rser.2018.04.019
3.
Carr
,
L. W.
,
McAlister
,
K. W.
, and
McCroskey
,
W. J.
,
1977
, “
Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments
,”
Technical Report NASA Technical Note D-8382
,
NASA AMES Research Center
.
4.
McAlister
,
K. W.
,
Carr
,
L. W.
, and
McCroskey
,
W. J.
,
1978
, “
Dynamic Stall Experiments on the NACA 0012 Airfoil
,”
Technical Report NASA Technical Paper 1100
,
NASA
.
5.
Ericsson
,
L. E.
, and
Reding
,
J. P.
,
1988
, “
Fluid Mechanics of Dynamic Stall: Part 1 Unsteady Flow Concepts
,”
J. Fluids Struct.
,
2
(
1
), pp.
1
33
. 10.1016/S0889-9746(88)90116-8
6.
Hyun
,
B. S.
,
Suh
,
J. S.
, and
Lee
,
P. M.
,
1993
, “
Investigation on the Aerodynamic Performance of a Wells Turbine for Ocean Wave Energy Absorption
,”
J. Soc. Naval Arch. Korea
,
30
(
4
), pp.
23
30
.
7.
Camporeale
,
S.
, and
Filianoti
,
P.
,
2009
, “
Behaviour of a Small Wells Turbine Under Randomly Varying Oscillating Flow
,”
Proceedings of the 8th European Wave and Tidal Energy Conference
.
8.
Falcao
,
A. F. O.
,
Gato
,
L. M. C.
, and
Nunes
,
E. P. A. S.
,
2013
, “
A Novel Radial Self-Rectifying Air Turbine for Use in Wave Energy Converters. Part 2. Results From Model Testing
,”
Renewable Energy
,
53
, pp.
159
164
. 10.1016/j.renene.2012.11.018
9.
Inoue
,
M.
,
Kaneko
,
K.
,
Setoguchi
,
T.
, and
Saruwatari
,
T.
,
1988
, “
Studies on the Wells Turbine for Wave Power Generator (Turbine Characteristics and Design Parameter for Irregular Wave)
,”
JSME Int. J. Ser. 2
,
31
(
4
), pp.
676
682
.
10.
Takao
,
M.
,
Setoguchi
,
T.
,
Kaneko
,
K.
, and
Yu
,
S.
,
1996
, “
Performance of Wells Turbine With Guide Vanes for Wave Energy Conversion
,”
J. Therm. Sci.
,
5
(
2
), pp.
82
87
. 10.1007/s11630-996-0002-1
11.
Setoguchi
,
T.
,
Takao
,
M.
, and
Kaneko
,
K.
,
1998
, “
Hysteresis on Wells Turbine Characteristics in Reciprocating Flow
,”
Int. J. Rotating Mach.
,
4
(
1
), pp.
17
24
. 10.1155/S1023621X98000025
12.
Paderi
,
M.
, and
Puddu
,
P.
,
2013
, “
Experimental Investigation in a Wells Turbine Under Bi-Directional Flow
,”
Renewable Energy
,
57
, pp.
570
576
. 10.1016/j.renene.2013.02.016
13.
Puddu
,
P.
,
Paderi
,
M.
, and
Manca
,
C.
,
2014
, “
Aerodynamic Characterization of a Wells Turbine Under Bi-Directional Airflow
,”
Energy Proced.
,
45
, pp.
278
287
. 10.1016/j.egypro.2014.01.030
14.
Raghunathan
,
S.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
1987
, “
Hysteresis on Wells Turbine Blades
,”
ASME Fluids Engineering Conference, No. 87-FE3
.
15.
Kaneko
,
K.
,
Setoguchi
,
T.
,
Hamakawa
,
H.
, and
Inoue
,
M.
,
1991
, “
Biplane Axial Turbine for Wave Power Generator
,”
Int. J. Offshore Polar Eng.
,
1
(
2
), pp.
122
128
.
16.
Starzmann
,
R.
,
Carolus
,
T. H.
,
Tease
,
K.
, and
Arlitt
,
R.
,
2011
, “
Effect of Design Parmeters on Aero-Acoustic and Aerodynamic Performance of Wells Turbines
,”
Ocean Renewable Energy of International Conference on Offshore Mechanics and Arctic Engineering (OMAE)
,
Rotterdam, Netherlands
,
June 19–24
.
17.
Setoguchi
,
T.
,
Kinoue
,
Y.
,
Kim
,
T. H.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2003
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion
,”
Renewable Energy
,
28
(
13
), pp.
2113
2127
. 10.1016/S0960-1481(03)00079-X
18.
Mamun
,
M.
,
Kinoue
,
Y.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
2004
, “
Hysteretic Characteristics of the Wells Turbine in a Deep Stall Condition
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
218
(
3
), pp.
167
173
. 10.1243/095441104323118888
19.
Kinoue
,
Y.
,
Mamun
,
M.
,
Setoguchi
,
T.
, and
Kaneko
,
K.
,
2007
, “
Hysteretic Characteristics of Wells Turbine for Wave Power Conversion (effects of Solidity and Setting Angle)
,”
Int. J. Sustainable Energy
,
26
(
1
), pp.
51
60
. 10.1080/14786450701359117
20.
Shehata
,
A. S.
,
Saqr
,
K. M.
,
Xiao
,
Q.
,
Shehadeh
,
M. F.
, and
Day
,
A.
,
2016
, “
Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method
,”
Renewable Energy
,
86
, pp.
1123
1133
. 10.1016/j.renene.2015.09.045
21.
Hu
,
Q.
, and
Li
,
Y.
,
2018
, “
Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
1
), p.
011901
. 10.1115/1.4037696
22.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2015
, “
Numerical Analysis of a Wells Turbine At Different Non-Dimensional Piston Frequencies
,”
J. Therm. Sci.
,
24
(
6
), pp.
535
543
. 10.1007/s11630-015-0819-6
23.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2016
, “
Physical Explanation of the Hysteresis in Wells Turbines: A Critical Reconsideration
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111105
. 10.1115/1.4033320
24.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
, and
Virdis
,
I.
,
2017
, “
On the Hysteretic Behaviour of Wells Turbines
,”
Energy Procedia
,
126
, pp.
706
713
. 10.1016/j.egypro.2017.08.303
25.
Ghisu
,
T.
,
Cambuli
,
F.
,
Puddu
,
P.
,
Virdis
,
I.
, and
Carta
,
M.
,
2019
, “
Discussion on “Unsteady RANS Simulations of Wells Turbine Under Transient Flow Conditions” by Hu and Li
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
4
), p.
045501
. 10.1115/1.4042875
26.
Virdis
,
I.
,
Ghisu
,
T.
,
Cambuli
,
F.
, and
Puddu
,
P.
,
2018
, “
A Lumped Parameter Model for the Analysis of Dynamic Effects in Wells Turbines
,”
Energy Procedia
,
148
, pp.
503
510
. 10.1016/j.egypro.2018.08.126
27.
Ghisu
,
T.
,
Cambuli
,
F.
,
Mandas
,
M.
,
Puddu
,
P.
,
Seshadri
,
P.
, and
Parks
,
G. T.
,
2018
, “
Numerical Evaluation of Entropy Generation in Isolated Airfoils and Wells Turbines
,”
Meccanica
,
53
(
14
), pp.
3437
3456
. 10.1007/s11012-018-0896-1
28.
Freitas
,
C.
,
1993
, “
Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy
,”
J. Fluids Eng., Trans. ASME
,
115
(
3
), pp.
339
340
. 10.1115/1.2910144
29.
Rizzi
,
A.
, and
Vos
,
J.
,
1998
, “
Towards Estabilishing Credibility in Computational Fluid Dynamics Simulations
,”
AIAA J.
,
36
(
5
), pp.
668
674
. 10.2514/2.442
30.
Shehata
,
A. S.
,
Xiao
,
Q.
,
El-Shaib
,
M.
,
Sharara
,
A.
, and
Alexander
,
D.
,
2017
, “
Comparative Analysis of Different Wave Turbine Designs Based on Conditions Relevant to Northern Coast of Egypt
,”
Energy
,
120
, pp.
450
467
. 10.1016/j.energy.2016.11.091
31.
Ghisu
,
T.
,
Puddu
,
P.
, and
Cambuli
,
F.
,
2017
, “
A Detailed Analysis of the Unsteady Flow Within a Wells Turbine
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
231
(
3
), pp.
197
214
. 10.1177/0957650917691640
32.
Ghisu
,
T.
,
Parks
,
G.
,
Jaeggi
,
D.
,
Jarrett
,
J.
, and
Clarkson
,
P.
,
2010
, “
The Benefits of Adaptive Parametrization in Multi-Objective Tabu Search Optimization
,”
Eng. Optim.
,
42
(
10
), pp.
959
981
. 10.1080/03052150903564882
33.
Barakos
,
G. N.
, and
Drikakis
,
D.
,
2003
, “
Computational Study of Unsteady Turbulent Flows Around Oscillating and Ramping Aerofoils
,”
Int. J. Numer. Methods Fluids
,
186
(
2
), pp.
163
186
. 10.1002/fld.478
34.
Torresi
,
M.
,
Camporeale
,
S. M.
, and
Pascazio
,
G.
,
2009
, “
Detailed CFD Analysis of the Steady Flow in a Wells Turbine Under Incipient and Deep Stall Conditions
,”
ASME J. Fluid Eng.
,
131
(
7
), p.
071103
. 10.1115/1.3155921
35.
Shaaban
,
S.
, and
Abdel Hafiz
,
A.
,
2012
, “
Effect of Duct Geometry on Wells Turbine Performance
,”
Energy Convers. Manage.
,
61
(
September
), pp.
51
58
. 10.1016/j.enconman.2012.03.023
36.
Mahboubidoust
,
A.
, and
Ramiar
,
A.
,
2017
, “
Investigation of DBD Plasma Actuator Effect on the Aerodynamic and Thermodynamic Performance of High Solidity Wells Turbine
,”
Renewable Energy
,
112
, pp.
347
364
. 10.1016/j.renene.2017.04.072
37.
Nazeryan
,
M.
, and
Lakzian
,
E.
,
2018
, “
Detailed Entropy Generation Analysis of a Wells Turbine Using the Variation of the Blade Thickness
,”
Energy
,
143
, pp.
385
405
. 10.1016/j.energy.2017.11.006
38.
Kumar
,
P. M.
,
Halder
,
P.
,
Husain
,
A.
, and
Samad
,
A.
,
2019
, “
Performance Enhancement of Wells Turbine: Combined Radiused Edge Blade Tip, Static Extended Trailing Edge, and Variable Thickness Modifications
,”
Ocean Eng.
,
185
, pp.
47
58
. 10.1016/j.oceaneng.2019.05.041
39.
Kinoue
,
Y.
,
Setoguchi
,
T.
,
Kim
,
T.
,
Mamun
,
M.
,
Kaneko
,
K.
, and
Inoue
,
M.
,
2004
, “
Hysteretic Characteristics of the Wells Turbine in a Deep Stall Condition
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Maritime Environ.
,
218
(
3
), pp.
167
173
. 10.1243/095441104323118888
40.
Mittal
,
S.
, and
Saxena
,
P.
,
2000
, “
Prediction of Hysteresis Associated with the Static Stall of An Airfoil
,”
AIAA J.
,
38
(
5
), pp.
933
935
. 10.2514/2.1051
41.
Mizoguchi
,
M.
,
Kajikawa
,
Y.
, and
Itoh
,
H.
,
2014
, “
Static Stall Hysteresis of Low-Aspect-Ratio Wings
,”
32nd AIAA Applied Aerodynamics Conference
,
Atlanta, GA
,
June 16–20
.
42.
Modarres
,
R.
,
Peters
,
D.
, and
Gaskill
,
J.
,
2016
, “
Dynamic Stall Model with Circulation Pulse and Static Hysteresis for Naca 0012 and Vr-12 Airfoils
,”
J. Am. Helicopter Soc.
,
61
(
3
), pp.
1
10
. 10.4050/JAHS.61.032004
43.
Sarlak
,
H.
,
Fr re
,
A.
,
Mikkelsen
,
R.
, and
Sørensen
,
J.
,
2018
, “
Experimental Investigation of Static Stall Hysteresis and 3-dimensional Flow Structures for An Nrel S826 Wing Section of Finite Span
,”
Energies
,
11
(
6
), p.
1418
. 10.3390/en11061418
44.
Ghisu
,
T.
,
Puddu
,
P.
,
Cambuli
,
F.
,
Mandas
,
N.
,
Seshadri
,
P.
, and
Parks
,
G. T.
,
2018
, “
Discussion on “Performance Analysis of Wells Turbine Blades Using the Entropy Generation Minimization Method” by Shehata, A. S., Saqr, K. M., Xiao, Q., Shahadeh, M. F. and Day, A.
Renewable Energy
,
118
, pp.
386
392
. 10.1016/j.renene.2017.10.107
45.
Doebelin
,
E. O.
, and
Manik
,
D. N.
,
2007
,
Measurement Systems: Application and Design
, 5th ed. (
McGraw-Hill series in Mechanical Engineering
),
Tata McGrawHill Education
,
New Delhi
.
46.
Simonetti
,
I.
,
Cappietti
,
L.
,
Elsafti
,
H.
, and
Oumeraci
,
H.
,
2018
, “
Evaluation of Air Compressibility Effects on the Performance of Fixed OWC Wave Energy Converters Using CFD Modelling
,”
Renewable Energy
,
119
, pp.
741
753
. 10.1016/j.renene.2017.12.027
47.
Ramirez
,
D.
,
Bartolome
,
J. P.
,
Martinez
,
S.
,
Herrero
,
L. C.
, and
Blanco
,
M.
,
2015
, “
Emulation of An OWC Ocean Energy Plant With PMSG and Irregular Wave Model
,”
IEEE Trans. Sustainable Energy
,
6
(
4
), pp.
1515
1523
. 10.1109/TSTE.2015.2455333
48.
Mishra
,
S. K.
, and
Patel
,
A.
,
2017
, “
Wells Turbine Modeling and PI Control Scheme for OWC Plant Using Xilinx System Generator
,”
2017 4th International Conference on Power, Control Embedded Systems (ICPCES)
,
Allahabad, India
,
Mar. 9–11
.
You do not currently have access to this content.