Abstract

Prediction of subgouge soil deformation during an ice gouging event is a challenging design factor in Arctic subsea pipelines. An accurate assessment of ice keel–seabed interaction requires expensive model testing and large deformation finite element analysis. Proposing reliable analytical/empirical solutions needs a deep understanding of the key parameters governing the problem. In this study, dimensional analysis of subgouge soil deformations was conducted and eight dimensionless groups of parameters were identified to facilitate proposing potential new solutions. A comprehensive dataset was established for horizontal and vertical subgouge deformations in both sand and clay seabed. Using the identified dimensionless groups, linear regression (LR) models were developed to estimate the horizontal and vertical deformation. Moreover, a sensitivity analysis (SA), as well as an uncertainty analysis (UA), was carried out to identify the superior LR models and the most influential parameter group. A high range of correlation coefficient (R), Nash-Sutcliffe efficiency coefficient (NSC), and variance accounted for (VAF) along with a low range of errors was achieved for the best LR model. The results of the superior LR models were also compared with the existing empirical equations. The study showed that the shear strength parameters of the seabed soil and the ratio of gouge depth to gouge width are the governing dimensionless parameters to model the horizontal and vertical subgouge soil deformations.

References

References
1.
Emmerson
,
C.
, and
Lahn
,
G.
,
2012
,
Arctic Opening: Opportunity and Risk in the High North
,
Lloyd's, Chatham House Report
,
London
.
2.
Alba
,
J. L.
,
2015
,
Ice Scour and Gouging Effects With Respect to Pipeline and Wellhead Placement and Design
,
Bureau of Safety and Environmental Enforcement (BSEE), Wood Group Kenny
,
Report No. 100100.01.PL.REP.004
,
Houston, TX
.
3.
Lanan
,
G. A.
,
Cowin
,
T. G.
, and
Johnston
,
D. K.
,
2011
, “
Alaskan Beaufort Sea Pipeline Design, Installation and Operation
,”
OTC Arctic Technology Conference
, Houston, TX, Feb. 7–9, Paper No. 22110.
4.
Kenny
,
S.
,
Jukes
,
P.
,
2017
, “Resource Development in Arctic Regions,”
Encyclopedia of Maritime and Offshore Engineering
, J. Carlton, P. Jukes, and Y.-S. Choo, eds., Wiley, Hoboken, NJ, pp,
1
21
.
5.
Lach
,
P. R.
,
1996
, “
Centrifuge Modelling of Large Soil Deformation due to Ice Scour
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
6.
Nematzadeh
,
A.
, and
Shiri
,
H.
,
2020
, “
The Influence of Non-Linear Stress-Strain Behavior of Dense Sand on Seabed Response to Ice Gouging
,”
Cold Reg. Sci. Technol.
,
170
, p.
102929
. 10.1016/j.coldregions.2019.102929
7.
Nobahar
,
A.
,
Kenny
,
S.
, and
Phillips
,
R.
,
2007
, “
Buried Pipelines Subject to Subgouge Deformations
,”
Int. J. Geomech.
,
7
(
3
), pp.
206
216
. 10.1061/(ASCE)1532-3641(2007)7:3(206)
8.
Nobahar
,
A.
,
Kenny
,
S.
,
King
,
T.
,
McKenna
,
R.
, and
Phillips
,
R.
,
2007
, “
Analysis and Design of Buried Pipelines for Ice Gouging Hazard: A Probabilistic Approach
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
3
), pp.
219
228
. 10.1115/1.2426989
9.
Kenny
,
S.
,
Bruce
,
J.
,
King
,
T.
,
McKenna
,
R.
,
Nobahar
,
A.
, and
Phillips
,
R.
,
2004
, “
Probabilistic Design Methodology to Mitigate Ice Gouge Hazards for Offshore Pipelines
,”
Proceedings of International Pipeline Conference
,
Calgary, Alberta
,
Oct.
, IPC04-0527, pp.
4
8
.
10.
Paulin
,
M. J.
,
1991
,
Preliminary Results of Physical Model Tests of ice Scour
,
Memorial University of Newfoundland, Centre for Cold Ocean Resources Engineering, St. John's
,
NL, Canada
.
11.
Paulin
,
M. J.
,
1992
, “
Physical Model Analysis of Iceberg Scour in Dry and Submerged Sand
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
12.
C-CORE
,
1995
,
Phase 3: Centrifuge Modelling of Ice Keel Scour
,
C-CORE Report 95-Cl2
,
St. John's
,
NL, Canada
.
13.
Hynes
,
F.
,
1996
, “
Centrifuge Modelling of Ice Scour in Sand
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
14.
C-CORE
,
1996
,
PRISE Phase 3c: Extreme LEE Gouge Event—Modeling and Interpretation
,
C-CORE Report 96-C32
,
St. John’s
,
NL, Canada
.
15.
Yang
,
W.
,
2009
, “
Physical Modeling of Subgouge Deformations in Sand
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
16.
Schoonbeek
,
I. S.
,
van Kesteren
,
W. G.
,
Xin
,
M. X.
, and
Been
,
K.
,
2006
, “
Slip Line Field Solutions as an Approach to Understand Ice Subgouge Deformation Patterns
,”
The Sixteenth International Offshore and Polar Engineering Conference
,
International Society of Offshore and Polar Engineers
,
San Francisco, CA
,
May 28–June 2
, pp.
628
633
.
17.
Been
,
K.
,
Sancio
,
R. B.
,
Ahrabian
,
D.
,
van Kesteren
,
W.
,
Croasdale
,
K.
, and
Palmer
,
A.
,
2008
, “
Subscour Displacement in Clays From Physical Model Tests
,”
2008 7th International Pipeline Conference
,
Calgary, Alberta, Canada
,
Sept. 29–Oct. 3
,
American Society of Mechanical Engineers Digital Collection
, pp.
239
245
.
18.
Nobahar
,
A.
,
2003
, “
Effects of Soil Spatial Variability on Soil-Structure Interaction
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
19.
Konuk
,
I.
,
2009
, “
Arctic Pipeline Design Challenges and Current Practices: Ice Scour
,”
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, HI
,
May 31–June 5
,
American Society of Mechanical Engineers
, pp.
155
162
.
20.
Moore
,
P.
,
King
,
T.
, and
Sonnichsen
,
G.
,
2011
, “
Iceberg Scout Rise-Up Modeling
,”
Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions
, No. POAC11–099.
21.
Chari
,
T.
, and
Allen
,
J.
,
1974
, “
An Analytical Model and Laboratory Tests on Iceberg Sediment Interaction
,”
Ocean'74-IEEE International Conference on Engineering in the Ocean Environment
,
Halifax, NS, Canada
,
Aug. 21–23
,
IEEE
, pp.
133
136
.
22.
Chari
,
T. R.
,
1975
, “
Some Geotechnical Aspects of Iceberg Grounding
,”
Doctoral dissertation
,
Memorial University of Newfoundland, St. John's
,
NL, Canada
.
23.
Chari
,
T. R.
,
1980
, “
A Model Study of Iceberg Scouring in the North Atlantic
,”
J. Pet. Technol.
,
32
(
12
), pp.
2
247
. 10.2118/7385-PA
24.
Nessim
,
M. A.
, and
Jordaan
,
I. J.
,
1985
, “
Protection of Arctic Submarine Pipelines Against Ice Scour
,”
ASME J. Energy Resour. Technol.
,
107
(
3
), pp.
356
361
. 10.1115/1.3231199
25.
Comfort
,
G.
, and
Graham
,
B.
,
1986
,
Evaluation of Sea Bottom Ice Scour Models (No. 37)
.
Environmental Studies Revolving Funds, Report No. 37
,
Arctec Canada Limited
,
Calgary, Alberta, Canada
.
26.
Prasad
,
K. S. R.
, and
Chari
,
T. R.
,
1986
, “
Some Factors Influencing Iceberg Scour Estimates
,”
ASME J. Energy Resour. Technol.
,
108
(
3
), pp.
234
239
. 10.1115/1.3231271
27.
Schuring
,
D. J.
, and
Emori
,
R. I.
,
1965
, “
Soil Deforming Processes and Dimensional Analysis
,”
SAE Trans.
,
73
, pp.
485
494
.
28.
Bekker
,
M. G.
,
1956
,
Theory of Land Locomotion
,
University of Michigan Press
,
Ann Arbor, MI
.
29.
Janosi
,
Z.
,
1961
, “
The Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicles in Defarmable Soils
,”
Proceedings of First International Conference of ISTVS, Turin
, pp.
707
736
.
30.
C-CORE
,
2009
,
PIRAM—Gouge Morphology Study
,
C-CORE Report R-09-013-490 v1
,
St. John's
,
NL, Canada
.
31.
C-CORE
,
2009
,
PIRAM—Draft Final Report
,
C-CORE Report R-09-019-490 v1
,
St. John's
,
NL, Canada
.
32.
Duplenskiy
,
S.
,
2012
, “
Protection of Subsea Pipelines Against Ice Ridge Gouging in Conditions of Substantial Surface Ice
,”
Master’s thesis
,
University of Stavanger
,
Norway
.
33.
Duplenskiy
,
S.
, and
Gudmestad
,
O. T.
,
2013
, “
Draft: Protection Of Subsea Pipelines Against Ice Ridge Gouging in Conditions of Substantial Surface Ice
,”
Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
, June 9–14, Paper No. 10430.
34.
Bland
,
J. M.
, and
Peacock
,
J. L.
,
2002
, “
Interpreting Statistics With Confidence
,”
Obstet. Gynaecol.
,
4
(
3
), pp.
176
180
. 10.1576/toag.2002.4.3.176
35.
Box
,
J. F.
,
1987
, “
Guinness, Gosset, Fisher, and Small Samples
,”
Stat. Sci.
,
2
(
1
), pp.
45
52
. 10.1214/ss/1177013437
36.
Myers
,
J. L.
,
Well
,
A. D.
, and
Lorch
,
J. R.
,
2010
, “Developing the Fundamentals of Hypothesis Testing Using the Binomial Distribution,”
Research Design and Statistical Analysis
, Routledge, New York, pp.
65
90
.
37.
Freedman
,
D. A.
,
2009
,
Statistical Models: Theory and Practice
,
Cambridge University Press
,
New York
.
38.
Yan
,
X.
, and
Su
,
X.
,
2009
,
Linear Regression Analysis: Theory and Computing
,
World Scientific
,
Singapore
.
39.
Koç
,
M.
, and
Barkana
,
A.
,
2014
, “
Application of Linear Regression Classification to Low-Dimensional Datasets
,”
Neurocomputing
,
131
, pp.
331
335
. 10.1016/j.neucom.2013.10.009
40.
Forbrich
,
I.
,
Kutzbach
,
L.
,
Hormann
,
A.
, and
Wilmking
,
M.
,
2010
, “
A Comparison of Linear and Exponential Regression for Estimating Diffusive CH4 Fluxes by Closed-Chambers in Peatlands
,”
Soil Biol. Biochem.
,
42
(
3
), pp.
507
515
. 10.1016/j.soilbio.2009.12.004
41.
Bao
,
F.
,
Zhou
,
G.
,
Wang
,
F.
, and
Sui
,
X.
,
2010
, “
Partitioning Soil Respiration in a Temperate Desert Steppe in Inner Mongolia Using Exponential Regression Method
,”
Soil Biol. Biochem.
,
42
(
12
), pp.
2339
2341
. 10.1016/j.soilbio.2010.08.033
42.
Crosetto
,
M.
,
Tarantola
,
S.
, and
Saltelli
,
A.
,
2000
, “
Sensitivity and Uncertainty Analysis in Spatial Modelling Based on GIS
,”
Agr. Ecosyst. Environ.
,
81
(
1
), pp.
71
79
. 10.1016/S0167-8809(00)00169-9
43.
Azimi
,
H.
,
Bonakdari
,
H.
,
Ebtehaj
,
I.
,
Gharabaghi
,
B.
, and
Khoshbin
,
F.
,
2018
, “
Evolutionary Design of Generalized Group Method of Data Handling-Type Neural Network for Estimating the Hydraulic Jump Roller Length
,”
Acta Mechanica
,
229
(
3
), pp.
1197
1214
. 10.1007/s00707-017-2043-9
44.
Azimi
,
H.
,
Bonakdari
,
H.
, and
Ebtehaj
,
I.
,
2019
, “
Gene Expression Programming-Based Approach for Predicting the Roller Length of a Hydraulic Jump on a Rough Bed
,”
ISH J. Hydraul. Eng.
, pp.
1
11
. 10.1080/09715010.2019.1579058
45.
Wilson
,
E. B.
,
1927
, “
Probable Inference, the Law of Succession, and Statistical Inference
,”
J. Am. Stat. Assoc.
,
22
(
158
), pp.
209
212
. 10.1080/01621459.1927.10502953
46.
Wallis
,
S.
,
2013
, “
Binomial Confidence Intervals and Contingency Tests: Mathematical Fundamentals and the Evaluation of Alternative Methods
,”
J. Quant. Linguist.
,
20
(
3
), pp.
178
208
. 10.1080/09296174.2013.799918
47.
Woodworth-Lynes
,
C.
,
Nixon
,
D.
,
Phillips
,
R.
, and
Palmer
,
A.
,
1996
, “
Subgouge Deformations and the Security of Arctic Marine Pipelines
,”
Offshore Technology Conference
, Houston,TX, May 6–9, Paper OTC-8222-MS.
You do not currently have access to this content.