Abstract

Pile installation by water jetting relies extensively upon empirical methods. For more scientific approaches, improvements have to be made in identifying the erosion processes that occur within the zone of soil adjacent to the pile. This paper addresses the problem of offshore pile installation in saturated clay by examining the mechanisms associated with water jet techniques. Parameters controlling installation geometry and pile embedment depth within the seabed are established based on tests carried out in laboratory physical scale using downward vertical water jets in highly compressible clay. Observations and measurements indicate that the geometry of the smeared and fluidized zone is constrained to two pile diameters, the eroded cavity under the pile tip is controlled by the nozzle jet Reynolds number, and the penetration embedment depth is a function of pile mass and applied water flowrate. It is demonstrated that penetration embedment depth is a function of pile mass and applied water flowrate. Based on the laws of similarity and statistical analysis, an equation is proposed for the maximum embedment depth of piles in clay, which is described as a function of pile geometry and mass, nozzle Reynolds number of water jet, along with the fluid and soil properties.

References

References
1.
Ehlers
,
C. J.
,
Young
,
A. G.
, and
Chen
,
J.
,
2004
, “
Technology Assessment of Deep Water Anchors
,”
Proceedings of the 36th Annual Offshore Technology Conference
,
Houston, TX
,
Paper No. OTC 16840
.
2.
Raie
,
M. S.
, and
Tassoulas
,
J. L.
,
2009
, “
Installation of Torpedo Anchors: Numerical Modeling
,”
Geotech. Geoenviron. Eng.
,
135
(
12
), pp.
1805
1813
. 10.1061/(ASCE)GT.1943-5606.0000159
3.
Khalili
,
N.
, and
Niven
,
R. K.
,
1996
, “
Upflow Washing: A New in Situ Technology for Organic and Metal Remediation
,”
3rd International Symposium on Environmental Geotechnology
,
San Diego, CA
,
June 7
,
Technomic Publishing
,
Lancaster, PA
, Vol.
1
, pp.
745
754
.
4.
Niven
,
R. K.
,
1998
, “
In Situ Multiphase Fluidisation (Upflow Washing) for the Remediation of Diesel and Lead Contaminated Soils
,”
Ph.D. thesis
,
School of Civil and Environmental Engineering, The University of New South Wales
,
Sydney, Australia
.
5.
Weisman
,
R. N.
,
Collins
,
A. G.
, and
Parks
,
J. M.
,
1982
, “
Maintaining Tidal Inlet Channels by Fluidization
,”
ASCE J. Waterw., Harbors Coastal Eng. Div
,
108
(
4
), pp.
526
538
.
6.
Weisman
,
R. N.
, and
Lennon
,
G. P.
,
1994
, “
Design of Fluidizer Systems for Coastal Environment
,”
ASCE J. Waterw., Harbors Coastal Eng. Div
,
120
(
5
), pp.
68
487
. 10.1061/(asce)0733-950x(1994)120:5(468)
7.
Rajaratnam
,
N.
, and
Beltaos
,
S.
,
1977
, “
Erosion by Impinging Circular Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
103
(
10
), pp.
1191
1205
.
8.
Aderibigbe
,
O. O.
, and
Rajaratnam
,
N.
,
1996
, “
Erosion of Loose Beds by Submerged Circular Impinging Turbulent Jets
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
34
(
1
), pp.
19
33
. 10.1080/00221689609498762
9.
Hazen
,
A.
,
1920
, “
Hydraulic Fill Dams
,”
Trans., Am. Soc. Civil Eng.
,
83
(
1
), pp.
1713
1745
.
10.
Tsinker
,
G. P.
,
1988
, “
Pile Jetting
,”
ASCE J. Geotech. Geoenviron. Eng.
,
114
(
3
), pp.
326
334
. 10.1061/(ASCE)0733-9410(1988)114:3(326)
11.
Xu
,
G. H.
,
Yue
,
Z. Q.
,
Liu
,
D. F.
, and
He
,
F. R.
,
2006
, “
Grouted Jetted Precast Concrete Sheet Piles: Method, Experiments, and Applications
,”
Can. Geotech. J.
,
43
(
12
), pp.
1358
1373
. 10.1139/t06-094
12.
Thiyyakkandi
,
S.
,
Mcvay
,
M.
,
Lai
,
P.
, and
Herrera
,
R.
,
2017
, “
Suitability Of Jetted And Grouted Precast Pile For Supporting Mast Arm Structures
,”
Can. Geotech. J.
,
54
(
9
), pp.
1231
1244
. 10.1139/cgj-2016-0467
13.
Medeiros
Jr.,
C. J.
,
Hassui
,
L. H.
, and
Machado
,
R. D.
(
2000
). “
Pile for Anchoring Floating Structures and Process for Installing the Same
,”
Brazilian Patent Number 9603599-4
, United States Patent Number 6,106.
14.
Medeiros
,
C. J.
, Jr.
,
2001
, “
Torpedo Anchor for Deep Water
,”
Proceedings of Deepwater Offshore Technology Conference
,
Rio de Janeiro, Brazil
,
June 3–8
.
15.
Medeiros
,
C. J.
, Jr.
,
2002
, “
Low Cost Anchor System for Flexible Risers in Deep Waters
,”
Proceedings Annual Offshore Technology Conference
,
Houston, TX
,
May 6–9
.
16.
O’loughlin
,
C. D.
,
Randolph
,
M. F.
, and
Richardson
,
M.
,
2004
, “
Experimental and Theoretical Studies of Deep Penetrating Anchors
,”
Proceedings Annual Offshore Technology Conference
,
Houston, TX
,
May 3–6
.
17.
Brandão
,
F. E. N.
,
Henriques
,
C. C. D.
,
Araújo
,
J. B.
,
Ferreira
,
O. C. G.
, and
Amaral
,
C. S.
,
2006
, “
Albacora Leste Field Development—FPSO P-50 Mooring System Concept
,”
Proceedings of the 38th Offshore Technology Conference
,
Houston, TX
,
May 1–4
,
Paper No. 18243
.
18.
Sagrilo
,
L. V. S.
,
Sousa
,
J. R. M.
,
Lima
,
E. C. P.
,
Porto
,
E. C.
,
Fernandes
,
J. V.
, and
Foppa
,
D.
,
2010
, “
Reliability-Based Design of Torpedo Anchors
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
,
Shanghai, China
,
June 6–11
.
19.
Randolph
,
M. F.
,
Cassidy
,
M.
,
Gournec
,
S.
, and
Erbrich
,
C.
,
2005
, “
Challenges of Offshore Geotechnical Engineering
,”
16th International Conference on Soil Mechanics and Foundation Engineering
,
Osaka, Japan
,
Sept. 12–16
, pp.
123
176
.
20.
Fernandes
,
A. C.
,
Araujo
,
J. B.
,
Almeida
,
J. C. L.
,
Machado
,
R. D.
, and
Matos
,
V.
,
2006
, “
Torpedo Anchor Installation Hydrodynamics
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
4
), pp.
286
293
. 10.1115/1.2355514
21.
Sousa
,
J. R. M.
,
Aguiar
,
C. S.
,
Ellwanger
,
G. B.
,
Porto
,
E. C.
,
Foppa
,
D.
, and
Medeiros
,
C. J.
,
2011
, “
Undrained Load Capacity of Torpedo Anchors Embedded in Cohesive Soils
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2)
, p.
021102
. 10.1115/1.4001953
22.
Henriques
,
P. R. D.
, Jr.
,
Foppa
,
D.
,
Porto
,
E. C.
, and
Medeiros
,
C. J.
, Jr
,
2010
, “
Torpedo Piles, Alternative for High Anchor Loads
,”
Brazilian Congress of Soil Mechanics and Geotechnical Engineering
,
Gramado, Brazil
,
Aug. 17–22
.
23.
Henriques
,
P. R. D.
, Jr.
,
Porto
,
E. C.
,
Medeiros
,
C. J.
, Jr
,
Foppa
,
D.
,
Costa
,
R. G. B.
,
Fernandes
,
J. V. V.
,
Danziger
,
F. A. B.
,
Jannuzzi
,
G. M. F.
, and
Guimarães
,
G. V. M.
,
2010b
, “
The Development of Piezocone-Torpedo: Purposes of Essay, Challenges and First Tests.
Brazilian Congress of Soil Mechanics and Geotechnical Engineering
,
Gramado, Brazil
,
Aug. 17–22
.
24.
Schnaid
,
F.
,
Passini
,
L.
,
Stracke
,
F.
, and
Mezzomo
,
S.
,
2014
, “
On the Response of Fluidized Piles From Laboratory Model Tests in Granular Soils
,”
J. Geo- Eng. Sci.
,
1
(
2
), pp.
69
81
. 10.3233/JGS-140024
25.
Passini
,
L. B.
,
Schnaid
,
F.
,
Rocha
,
M. M.
, and
Möller
,
S. V.
,
2018
, “
Mechanism of Model Pile Installation by Water jet Fluidization in Sand
,”
Ocean Eng.
,
170
, pp.
160
170
. 10.1016/j.oceaneng.2018.10.017
26.
Niven
,
R. K.
, and
Khalili
,
N.
,
1998a
, “
In Situ Fluidisation by a Single Internal Vertical jet
,”
J. Hydraul. Res.
,
36
(
2
), pp.
199
228
. 10.1080/00221689809498633
27.
Leva
,
M.
,
1959
,
Fluidization
,
McGraw-Hill Book Co.
,
New York
28.
Mazureck
,
K. A.
,
2001
, “
Scour of Clay by Jets
,”
Ph.D. thesis, (in Water Resources Engineering)—Department of Civil & Environmental Engineering
.
University of Alberta
,
Edmonton, Alberta, Canada
.
29.
Hameed
,
R.
,
Gunaratne
,
M.
,
Putcha
,
S.
,
Kuo
,
C.
, and
Johnson
,
S.
,
2000
, “
Lateral Load Behavior of Jetted Piles
,”
Geotech. Test. J.
,
23
(
3
), pp.
358
368
. ISSN 0149-6115. 10.1520/GTJ11057J
30.
Passini
,
L. B.
,
2015
, “
Installation and Axial Load Capacity of Fluidized Model Piles in Sandy Soils
,”
Ph.D. thesis
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
31.
Jung
,
J. G.
,
2012
, “
Study of Jetting in Clayey Soils and its Application to Engineering Offshore Foundations
,”
M.Sc. dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
32.
Mezzomo
,
S. M.
,
2009
, “
Study of Fluidization Using Water Jets in Sand
,”
M.Sc. dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
33.
Rocha
,
C. C. M.
,
2014
, “
Attenuation of Static Charges in Reduced Model System Offshore Mooring Line
,”
M.Sc. dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
34.
Sampa
,
N. C.
,
2015
, “
Attenuation of Dynamic Loads on Offshore Platforms
,”
M.Sc. dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
35.
Stracke
,
F.
,
2012
, “
Fluidization of Sand Associated to Injection of Cement Agent for Applying in Offshore Structures
,”
M.Sc. dissertation
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
36.
Lourenço
,
D. E.
,
2016
, “
Hydro Jetting in Clayey Soils
,”
Ph.D. thesis
,
Federal University of Rio Grande do Sul
,
Porto Alegre, Brazil
.
37.
Randolph
,
M. F.
, and
Hope
,
S.
,
2004
, “
Effect of Cone Velocity on Cone Resistance and Excess Pore Pressures
,”
Proceedings of the International Symposium on Engineering Practice and Performance of Soft Deposits
,
Osaka, Japan
, pp.
147
152
.
38.
Dienstmann
,
G.
,
Maghous
,
S.
, and
Schnaid
,
F.
,
2017
, “
Theoretical Analysis and Finite-Element Simulation for Nonlinear Poroelastic Behavior of Cylinder Expansion in Infinite Media Under Transient Pore-Fluid Flow Conditions
,”
Int. J. Geomech.
,
17
(
7
), p.
04017001
. 10.1061/(ASCE)GM.1943-5622.0000834
39.
Dienstmann
,
G.
,
Schnaid
,
F.
,
Maghous
,
S.
, and
DeJong
,
J.
,
2018
, “
Piezocone Penetration Rate Effects in Transient Gold Tailings
,”
Geotech. Geoenviron. Eng.
,
144
(
2
), p.
04017116
. 10.1061/(ASCE)GT.1943-5606.0001822
40.
Petrobras
,
2011
,
Floating Unit Foundations Project in the Oil and Gas Industry
,
Petrobras
,
Rio de Janeiro, Brazil
.
41.
Zhang
,
Y.
,
Li
,
J.
,
Liang
,
F.
, and
Tang
,
J.
,
2016
, “
Interpretation of Cone Resistance and Pore-Water Pressure in Clay with a Modified Spherical Cavity Expansion Solution
,”
Bull. Eng. Geol. Environ.
,
75
(
1
), pp.
391
399
. 10.1007/s10064-015-0732-y
42.
Passini
,
L. B.
, and
Schnaid
,
F.
,
2015
, “
Experimental Investigation of Pile Installation by Vertical Jet Fluidization in Sand
,”
ASME. J. Offshore Mech. Arct. Eng.
,
137
(
4
), p.
042002
. 10.1115/1.4030707
43.
Vennard
,
J. K
,
1978
,
Elementary Fluid Mechanics
, 5th ed.,
Guanabara dois
,
Rio de Janeiro, Brazil
.
44.
Carneiro
,
F. L.
,
1993
,
Dimensional Analysis and Similarity Theory of Physical Models
,
UFRJ editor
,
Rio de Janeiro, Brazil
.
45.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1998
,
Fluid Mechanics
, 4th ed.,
LTC editor
,
Rio de Janeiro, Brazil
.
46.
Araujo
,
J. D.
,
Machado
,
R. D.
, and
Medeiros
,
C. J.
, Jr.
,
2004
, “
High Holding Power Torpedo Pile-Results for the First Long Term Application
,”
ASME International Conference on Offshore Mechanics and Arctic Engineering, 23rd International Conference on Offshore Mechanics and Arctic Engineering
,
Vancouver, British Columbia, Canada
,
June 20–25
, pp.
417
421
.
47.
Kumar
,
P. R.
,
2007
, “
Scaling Law Sand Experimental Modeling of Contaminant Transport Mechanism Through Soils in a Geotechnical Centrifuge
,”
Geotech. Geol. Eng.
,
25
(
5
), pp.
581
590
. 10.1007/s10706-007-9131-x
48.
Rouse
,
H.
,
1939
, “
Criteria for Similarity in the Transportation of Sediment
,”
Proceedings of Hydraulics Conference
,
Iowa
,
June 12–15
, pp.
33
49
.
49.
Motta
,
V. F.
,
1972
,
Course of Similarity Theory
,
UFRGS editor
,
Porto Alegre, Brazil
.
50.
Gunaratne
,
M.
,
Hameed
,
R. A.
,
Kuo
,
C.
,
Putcha
,
S.
, and
Reddy
,
D. V.
(
1999
).
Investigation of the Effects of Pile Jetting and Preforming
.”
Research Report No. 772, Prepared for the Florida Department of Transportation, in Cooperation with Federal Highway Administration
,
University of South Florida
,
Tampa, FL
.
51.
Freund
,
J. E.
,
2006
,
Applied Statistics
, 11st ed.,
Bookman
,
Porto Alegre, Brazil
.
You do not currently have access to this content.