Abstract

The generation of two freak waves in a broadband and a narrowband random series registered in the experiments of Li, J. X., Li, P. F., and Liu, S. X. (2013, “Observations of Freak Waves in Random Wave Field in 2D Experimental Wave Flume,” China Ocean Eng., 27(5), pp. 659–670) is precisely reconstructed using a fully non-hydrostatic water wave model. The simulation results indicate that even when the background spectral bandwidths are different, the evolution processes of the two freak waves are similar. Both freak waves emerge quickly during the transition from normal states to extreme events. The freak waves can persist over a long distance, i.e., approximately 5 peak wavelengths. The reconstructed time series in both the backward and forward locations at which the freak waves were recorded reveal that the largest freak wave crests were not captured in the experiment. The freak waves gradually emerged from an intense wave group. The waves developed quickly during the transition from a normal state to an extreme event. Very deep troughs were also formed in the evolution process. The two freak waves were actually generated via different spectral bandwidth processes, but the generation mechanisms of the rogue waves were similar. By analyzing the time series of the freak wave groups, the formation of the freak waves is found to result from the combined effect of the dispersive focusing, the third-order resonant wave interactions, and the higher harmonics.

References

References
1.
Tsai
,
C. H.
,
Su
,
M. Y.
, and
Huang
,
S. J.
,
2004
, “
Observations and Conditions for Occurrence of Dangerous Coastal Waves
,”
Ocean. Eng.
,
31
(
5–6
), pp.
745
760
. 10.1016/S0029-8018(03)00113-6
2.
Lavrenov
,
I. V.
,
1998
, “
The Wave Energy Concentration at the Agulhas Current off South Africa
,”
Nat. Hazards.
,
17
(
2
), pp.
117
127
. 10.1023/A:1007978326982
3.
White
,
B. S.
, and
Fornberg
,
B.
,
1998
, “
On the Chance of Freak Waves at Sea
,”
J. Fluid Mech.
,
355
, pp.
113
138
. 10.1017/S0022112097007751
4.
Toffoli
,
A.
,
Lefevre
,
J. M.
,
Bitnergregersen
,
E.
, and
Monbaliu
,
J.
,
2005
, “
Towards the Identification of Warning Criteria: Analysis of a Ship Accident Database
,”
Appl. Ocean Res.
,
27
(
6
), pp.
281
291
. 10.1016/j.apor.2006.03.003
5.
Nikolkina
,
I.
, and
Didenkulova
,
I.
,
2011
, “
Rogue Waves in 2006–2010
,”
Nat. Hazards Earth Sys.
,
11
(
11
), pp.
2913
2924
. 10.5194/nhess-11-2913-2011
6.
Kharif
,
C.
, and
Pelinovsky
,
E.
,
2003
, “
Physical Mechanisms of the Rogue Wave Phenomenon
,”
Eur. J. Mech. B Fluids.
,
22
(
6
), pp.
603
634
. 10.1016/j.euromechflu.2003.09.002
7.
Onorato
,
M.
,
Residori
,
S.
,
Bortolozzo
,
U.
,
Montina
,
A.
, and
Arecchi
,
F. T.
,
2013
, “
Rogue Waves and Their Generating Mechanisms in Different Physical Contexts
,”
Phys. Rep.
,
528
(
2
), pp.
47
89
. 10.1016/j.physrep.2013.03.001
8.
Dysthe
,
K.
,
Krogstad
,
H. E.
, and
Müller
,
P.
,
2008
, “
Oceanic Rogue Waves
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
287
310
. 10.1146/annurev.fluid.40.111406.102203
9.
Adcock
,
T. A. A.
, and
Taylor
,
P. H.
,
2014
, “
The Physics of Anomalous (‘Rogue’) Ocean Waves
,”
Rep. Prog. Phys.
,
77
(
10
), p.
105901
. 10.1088/0034-4885/77/10/105901
10.
Cousins
,
W.
, and
Sapsis
,
T. P.
,
2016
, “
Reduced-Order Precursors of Rare Events in Unidirectional Nonlinear Water Waves
,”
J. Fluid Mech.
,
790
, pp.
368
388
. 10.1017/jfm.2016.13
11.
Farazmand
,
M.
, and
Sapsis
,
T. P.
,
2017
, “
Reduced-Order Prediction of Rogue Waves in Two-Dimensional Deep-Water Waves
,”
J. Comput. Phys.
,
340
, pp.
418
434
. 10.1016/j.jcp.2017.03.054
12.
Islas
,
A. L.
, and
Schober
,
C. M.
,
2005
, “
Predicting Rogue Waves in Random Oceanic Sea States
,”
Phys. Fluids
,
17
(
3
), p.
031701
. 10.1063/1.1872093
13.
Longuet-Higgins
,
M. S.
,
1974
, “
Breaking Waves in Deep or Shallow Water
,”
Proceedings of the 10th Conference on Naval Hydrodynamics
,
Cambridge, MA
,
June 24–28
, pp.
597
605
.
14.
Chaplin
,
J. R.
,
1996
, “
On Frequency-Focusing Unidirectional Waves
,”
Int. J. Offshore Polar Eng.
,
6
(
2
), pp.
131
137
.
15.
Brandini
,
C.
,
2001
, “
Nonlinear Interaction Processes in Extreme Wave Dynamics
,”
Ph. D. Dissertation
,
University of Firenze
,
Florence, Italy
.
16.
Johannessen
,
T. B.
, and
Swan
,
C.
,
2001
, “
A Laboratory Study of the Focusing of Transient and Directionally Spread Surface Water Waves
,”
Proc. R. Soc. Lond. A
,
457
(
2008
), pp.
971
1006
. 10.1098/rspa.2000.0702
17.
Baldock
,
T. E.
,
Swan
,
C.
, and
Taylor
,
P. H.
,
1996
, “
A Laboratory Study of Non-Linear Surface Waves on Water
,”
Philos. Trans. R. Soc. London, Ser. A
,
354
(
1704
), pp.
1
28
. 10.1098/rsta.1996.0001
18.
Benjamin
,
T. B.
, and
Feir
,
J. E.
,
1967
, “
The Disintegration of Wave Trains on Deep Water Part 1. Theory
,”
J. Fluid Mech.
,
27
(
3
), pp.
417
430
. 10.1017/S002211206700045X
19.
Dyachenko
,
A. I.
, and
Zakharov
,
V. E. E.
,
2005
, “
Modulation Instability of Stokes Wave→ Freak Wave
,”
J. Exp. Theor. Phys. Lett.
,
81
(
6
), pp.
255
259
. 10.1134/1.1931010
20.
Zakharov
,
V. E.
,
Dyachenko
,
A. I.
, and
Prokofiev
,
A. O.
,
2006
, “
Freak Waves as Nonlinear Stage of Stokes Wave Modulation Instability
,”
Eur. J. Mech. B Fluids.
,
25
(
5
), pp.
677
692
. 10.1016/j.euromechflu.2006.03.004
21.
Onorato
,
M.
,
Osborne
,
A. R.
, and
Serio
,
M.
,
2006
, “
Modulational Instability in Crossing Sea States: A Possible Mechanism for the Formation of Freak Waves
,”
Phys. Rev. Lett.
,
96
(
1
), p.
014503
. 10.1103/PhysRevLett.96.014503
22.
Gramstad
,
O.
,
Bitner-Gregersen
,
E.
,
Trulsen
,
K.
, and
Nieto-Borge
,
J. C.
,
2018
, “
Modulational Instability and Rogue Waves in Crossing Sea States
,”
J. Phys. Oceanogr.
,
48
(
6
), pp.
1317
1331
. 10.1175/JPO-D-18-0006.1
23.
E
,
H.
,
2005
, “
Freak Waves: Just bad Luck, or Avoidable?
,”
Europhys. News.
,
36
(
5
), pp.
159
162
. 10.1051/epn:2005504
24.
Wu
,
C. H.
, and
Yao
,
A. F.
,
2004
, “
Laboratory Measurements of Limiting Freak Waves on Currents
,”
J. Geophys. Res.
,
109
, p.
C12
. 10.1029/2004jc002612
25.
Yao
,
A. F.
, and
Wu
,
C. H.
,
2006
, “
Spatial and Temporal Characteristics of Transient Extreme Wave Profile on Depth-Varying Currents
,”
J. Eng. Mech.
,
132
(
9
), pp.
1015
1025
. 10.1061/(ASCE)0733-9399(2006)132:9(1015)
26.
Toffoli
,
A.
,
Waseda
,
T.
,
Houtani
,
H.
,
Cavaleri
,
L.
,
Greaves
,
D.
, and
Onorato
,
M.
,
2015
, “
Rogue Waves in Opposing Currents: An Experimental Study on Deterministic and Stochastic Wave Trains
,”
J. Fluid Mech.
,
769
, pp.
277
297
. 10.1017/jfm.2015.132
27.
Adcock
,
T. A. A.
,
Taylor
,
P. H.
,
Yan
,
S.
,
Ma
,
Q. W.
, and
Janssen
,
P. A. E. M.
,
2011
, “
Did the Draupner Wave Occur in a Crossing sea?
,”
Proc. R. Soc. Lond. A
,
467
(
2134
), pp.
3004
3021
. 10.1098/rspa.2011.0049
28.
Cavaleri
,
L.
,
Bertotti
,
L.
,
Torrisi
,
L.
,
Bitner-Gregersen
,
E.
,
Serio
,
M.
, and
Onorato
,
M.
,
2012
, “
Rogue Waves in Crossing Seas: The Louis Majesty Accident
,”
J. Geophys. Res.
,
117
(
C11
), p.
C00J10
. 10.1029/2012JC007923
29.
Kharif
,
C.
,
Giovanangeli
,
J. P.
,
Touboul
,
J.
,
Grare
,
L.
, and
Pelinovsky
,
E.
,
2008
, “
Influence of Wind on Extreme Wave Events: Experimental and Numerical Approaches
,”
J. Fluid Mech.
,
594
, pp.
209
247
. 10.1017/S0022112007009019
30.
Waseda
,
T.
, and
Tulin
,
M. P.
,
1999
, “
Experimental Study of the Stability of Deep-Water Wave Trains Including Wind Effects
,”
J. Fluid Mech.
,
401
, pp.
55
84
. 10.1017/S0022112099006527
31.
Metzger
,
J. J.
,
Fleischmann
,
R.
, and
Geisel
,
T.
,
2014
, “
Statistics of Extreme Waves in Random Media
,”
Phys. Rev. Lett.
,
112
(
20
), p.
203903
. 10.1103/PhysRevLett.112.203903
32.
Wang
,
R.
, and
Balachandran
,
B.
,
2018
, “
Extreme Wave Formation in Unidirectional Sea Due to Stochastic Wave Phase Dynamics
,”
Phys. Lett. A
,
382
(
28
), pp.
1864
1872
. 10.1016/j.physleta.2018.04.050
33.
Mori
,
N.
,
Liu
,
P. C.
, and
Yasuda
,
T.
,
2002
, “
Analysis of Freak Wave Measurements in the Sea of Japan
,”
Ocean. Eng.
,
29
(
11
), pp.
1399
1414
. 10.1016/S0029-8018(01)00073-7
34.
Soares
,
C. G.
,
Cherneva
,
Z.
, and
Antão
,
E. M.
,
2003
, “
Characteristics of Abnormal Waves in North Sea Storm sea States
,”
Appl. Ocean Res.
,
25
(
6
), pp.
337
344
. 10.1016/j.apor.2004.02.005
35.
Flanagan
,
J. D.
,
Dias
,
F.
,
Terray
,
E.
,
Strong
,
B.
, and
Dudley
,
J.
,
2016
, “
Extreme Water Waves off the West Coast of Ireland: Analysis of ADCP Measurements
,”
The 26th International Ocean and Polar Engineering Conference
,
ISOPE-I-16-589
.
36.
Christou
,
M.
, and
Ewans
,
K.
,
2014
, “
Field Measurements of Rogue Water Waves
,”
J. Phys. Oceanogr.
,
44
(
9
), pp.
2317
2335
. 10.1175/JPO-D-13-0199.1
37.
Gemmrich
,
J.
, and
Thomson
,
J.
,
2017
, “
Observations of the Shape and Group Dynamics of Rogue Waves
,”
Geophys. Res. Lett.
,
44
(
4
), pp.
1823
1830
. 10.1002/2016gl072398
38.
Magnusson
,
A. K.
, and
Donelan
,
M. A.
,
2013
, “
The Andrea Wave Characteristics of a Measured North Sea Rogue Wave
,”
ASME J. Offshore Mech. Arctic Eng.
,
135
(
3
), p.
031108
. 10.1115/1.4023800
39.
Santo
,
H.
,
Taylor
,
P. H.
,
Eatock Taylor
,
R.
, and
Choo
,
Y. S.
,
2013
, “
Average Properties of the Largest Waves in Hurricane Camille
,”
ASME J. Offshore Mech. Arctic Eng.
,
135
(
1
), p.
011602
. 10.1115/1.4006930
40.
Walker
,
D. A. G.
,
Taylor
,
P. H.
, and
Eatock Taylor
,
R.
,
2004
, “
The Shape of Large Surface Waves on the Open Sea and the Draupner New Year Wave
,”
App. Ocean Res.
,
26
(
3–4
), pp.
73
83
. 10.1016/j.apor.2005.02.001
41.
Cavaleri
,
L.
,
Barbariol
,
L. F.
,
Benetazzo
,
A.
,
Bertotti
,
L.
,
Bidlot
,
J. R.
,
Janssen
,
P. A. E. M.
, and
Wedi
,
N.
,
2016
, “
The Draupner Wave: A Fresh Look and the Emerging View
,”
J. Geophys. Res. Oceans
,
121
(
8
), pp.
6061
6075
. 10.1002/2016JC011649
42.
Kokorina
,
A.
, and
Slunyaev
,
A.
,
2019
, “
Lifetimes of Rogue Wave Events in Direct Numerical Simulations of Deep-Water Irregular Sea Waves
,”
Fluids
,
4
(
2
), p.
4020070
. 10.3390/fluids4020070
43.
Fujimoto
,
W.
,
Waseda
,
T.
, and
Webb
,
A.
,
2019
, “
Impact of the Four-Wave Quasi-Resonance on Freak Wave Shapes in the Ocean
,”
Ocean Dynam
,
69
(
1
), pp.
101
121
. 10.1007/s10236-018-1234-9
44.
Trulsen
,
K.
,
2001
, “
Simulating the Spatial Evolution of a Measured Time Series of a Freak Wave
,”
Proceedings of Rogue Waves 2000 Workshop
,
Brest, France
,
Nov. 29–30
, pp.
265
273
.
45.
Divinsky
,
B. V.
,
Levin
,
B. V.
,
Lopatukhin
,
L. I.
,
Pelinovsky
,
E. N.
, and
Slyunyaev
,
A. V.
,
2004
, “
A Freak Wave in the Black Sea: Observations and Simulation
,”
Dokl. Earth Sci. A.
,
395
, pp.
438
443
.
46.
Slunyaev
,
A.
,
Pelinovsky
,
E.
, and
Soares
,
C. G.
,
2005
, “
Modeling Freak Waves From the North Sea
,”
Appl. Ocean Res.
,
27
(
1
), pp.
12
22
. 10.1016/j.apor.2005.04.002
47.
Slunyaev
,
A.
,
2006
, “
Nonlinear Analysis and Simulations of Measured Freak Wave Time Series
,”
Eur. J. Mech. B Fluids.
,
25
(
5
), pp.
621
635
. 10.1016/j.euromechflu.2006.03.005
48.
Slunyaev
,
A.
,
Pelinovsky
,
E.
, and
Soares
,
C. G.
,
2014
, “
Reconstruction of Extreme Events Through Numerical Simulations
,”
ASME J. Offshore Mech. Arctic Eng.
,
136
(
1
), p.
011302
. 10.1115/1.4025545
49.
Sergeeva
,
A.
,
Slunyaev
,
A.
,
Pelinovsky
,
E.
,
Talipova
,
T.
, and
Doong
,
D. J.
,
2014
, “
Numerical Modeling of Rogue Waves in Coastal Waters
,”
Nat. Hazards Earth Sys.
,
14
(
4
), pp.
861
870
. 10.5194/nhess-14-861-2014
50.
Goullet
,
A.
, and
Choi
,
W.
,
2011
, “
A Numerical and Experimental Study on the Nonlinear Evolution of Long-Crested Irregular Waves
,”
Phys. Fluids
,
23
(
1
), p.
016601
. 10.1063/1.3533961
51.
Sergeeva
,
A.
, and
Slunyaev
,
A.
,
2013
, “
Rogue Waves, Rogue Events and Extreme Wave Kinematics in Spatio-Temporal Fields of Simulated sea States
,”
Nat. Hazards Earth Sys.
,
13
(
7
), pp.
1759
1771
. 10.5194/nhess-13-1759-2013
52.
Fernández
,
H.
,
Sriram
,
V.
,
Schimmels
,
S.
, and
Oumeraci
,
H.
,
2014
, “
Extreme Wave Generation Using Self Correcting Method—Revisited
,”
Coast Eng
,
93
, pp.
15
31
. 10.1016/j.coastaleng.2014.07.003
53.
Ducrozet
,
G.
,
Bonnefoy
,
F.
, and
Ferrant
,
P.
,
2016
, “
On the Equivalence of Unidirectional Rogue Waves Detected in Periodic Simulations and Reproduced in Numerical Wave Tanks
,”
Ocean Eng
,
117
, pp.
346
358
. 10.1016/j.oceaneng.2016.03.027
54.
Chabchoub
,
A.
,
Hoffmann
,
N. P.
, and
Akhmediev
,
N.
,
2011
, “
Rogue Wave Observation in a Water Wave Tank
,”
Phys Rev Lett
,
106
(
20
), p.
204502
. 10.1103/PhysRevLett.106.204502
55.
Wang
,
J.
,
Ma
,
Q. W.
,
Yan
,
S.
, and
Chabchoub
,
A.
,
2018
, “
Breather Rogue Waves in Random Seas
,”
Phys Rev Appl
,
9
(
1
), p.
014016
. 10.1103/PhysRevApplied.9.014016
56.
Boccotti
,
P.
,
2014
,
Wave Mechanics and Wave Loads on Marine Structures
,
Butterworth-Heinemann, Elsevier
,
Oxford
.
57.
Petrova
,
P. G.
,
Arena
,
F.
, and
Soares
,
C. G.
,
2011
, “
Space-Time Evolution of Random Wave Groups with High Waves Based on the Quasi-Determinism Theory
,”
Ocean. Eng.
,
38
(
14–15
), pp.
1640
1648
. 10.1016/j.oceaneng.2011.07.021
58.
Buchner
,
B.
,
van Dijk
,
R.
, and
Voogt
,
A.
,
2007
, “
The Spatial Analysis of an Extreme Wave in a Model Basin
,”
ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
,
California, USA
,
June 10–15
, pp.
267
275
.
59.
Clauss
,
G. F.
, and
Klein
,
M.
,
2011
, “
The New Year Wave in a Seakeeping Basin: Generation, Propagation, Kinematics and Dynamics
,”
Ocean. Eng.
,
38
(
14–15
), pp.
1624
1639
. 10.1016/j.oceaneng.2011.07.022
60.
Clauss
,
G. F.
, and
Klein
,
M.
,
2009
, “
The New Year Wave: Spatial Evolution of an Extreme Sea State
,”
ASME J. Offshore Mech. Arctic Eng.
,
131
(
4
), p.
041001
. 10.1115/1.3160533
61.
McAllister
,
M. L.
,
Draycott
,
S.
,
Adcock
,
T. A. A.
,
Taylor
,
P. H.
, and
Van Den Bremer
,
T. S.
,
2019
, “
Laboratory Recreation of the Draupner Wave and the Role of Breaking in Crossing Seas
,”
J. Fluid Mech.
,
860
, pp.
767
786
. 10.1017/jfm.2018.886
62.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
, and
Cavaleri
,
L.
,
2005
, “
Modulational Instability and Non-Gaussian Statistics in Experimental Random Water-Wave Trains
,”
Phys. Fluids.
,
17
(
7
), p.
078101
. 10.1063/1.1946769
63.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
,
Cavaleri
,
L.
,
Brandini
,
C.
, and
Stansberg
,
C. T.
,
2006
, “
Extreme Waves, Modulational Instability and Second Order Theory: Wave Flume Experiments on Irregular Waves
,”
Eur. J. Mech. B Fluids.
,
25
(
5
), pp.
586
601
. 10.1016/j.euromechflu.2006.01.002
64.
Li
,
J. X.
,
Li
,
P. F.
, and
Liu
,
S. X.
,
2013
, “
Observations of Freak Waves in Random Wave Field in 2D Experimental Wave Flume
,”
China Ocean Eng.
,
27
(
5
), pp.
659
670
. 10.1007/s13344-013-0055-3
65.
Janssen
,
P. A.
,
2003
, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
,
33
(
4
), pp.
863
884
. 10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2
66.
Engsig-Karup
,
A. P.
,
Bingham
,
H. B.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-Order Model for 3D Nonlinear Water Waves
,”
J. Comput Phys.
,
228
(
6
), pp.
2100
2118
. 10.1016/j.jcp.2008.11.028
67.
Ducrozet
,
G.
,
Bonnefoy
,
F.
,
Le Touzé
,
D.
, and
Ferrant
,
P.
,
2012
, “
A Modified High-Order Spectral Method for Wavemaker Modeling in a Numerical Wave Tank
,”
Eur. J. Mech. B Fluids.
,
34
, pp.
19
34
. 10.1016/j.euromechflu.2012.01.017
68.
Grilli
,
S. T.
,
Vogelmann
,
S.
, and
Watts
,
P.
,
2002
, “
Development of a 3D Numerical Wave Tank for Modeling Tsunami Generation by Underwater Landslides
,”
Eng Anal Bound Elem.
,
26
(
4
), pp.
301
313
. 10.1016/S0955-7997(01)00113-8
69.
Ai
,
C.
,
Jin
,
S.
, and
Lv
,
B.
,
2011
, “
A New Fully Non-Hydrostatic 3D Free Surface Flow Model for Water Wave Motions
,”
Int. J. Numer. Meth. Fluids.
,
66
(
11
), pp.
1354
1370
. 10.1002/fld.2317
70.
Ai
,
C.
, and
Jin
,
S.
,
2012
, “
A Multi-Layer non-Hydrostatic Model for Wave Breaking and Run-up
,”
Coast. Eng.
,
62
, pp.
1
8
. 10.1016/j.coastaleng.2011.12.012
71.
Ai
,
C.
,
Ding
,
W.
, and
Jin
,
S.
,
2014
, “
A General Boundary-Fitted 3D Non-Hydrostatic Model for Nonlinear Focusing Wave Groups
,”
Ocean. Eng.
,
89
, pp.
134
145
. 10.1016/j.oceaneng.2014.08.002
72.
Stelling
,
G.
, and
Zijlema
,
M.
,
2003
, “
An Accurate and Efficient Finite-Difference Algorithm for Non-Hydrostatic Free-Surface Flow With Application to Wave Propagation
,”
Int. J. Numer. Meth. Fluids.
,
43
(
1
), pp.
1
23
. 10.1002/fld.595
73.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
B. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
. 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
74.
Dong
,
G. H.
,
Ma
,
Y. X.
,
Zhang
,
W.
, and
Ma
,
X. Z.
,
2012
, “
Laboratory Study on the Modulation Evolution of Nonlinear Wave Trains
,”
Ocean Sys. Eng.
,
2
(
3
), pp.
189
203
. 10.12989/ose.2012.2.3.189
75.
Liu
,
P. C.
, and
Mori
,
N.
,
2001
, “
Characterizing Freak Waves With Wavelet Transform Analysis
,”
Proceedings of Rogue Waves 2000 Workshop
,
Brest, France
,
Nov. 29–30
, pp.
151
156
.
76.
Ma
,
Y.
,
Dong
,
G.
,
Perlin
,
M.
,
Ma
,
X.
,
Wang
,
G.
, and
Xu
,
J.
,
2010
, “
Laboratory Observations of Wave Evolution, Modulation and Blocking Due to Spatially Varying Opposing Currents
,”
J. Fluid Mech.
,
661
, pp.
108
129
. 10.1017/S0022112010002880
77.
Alber
,
I. E.
, and
Saffman
,
P. G.
,
1978
, “
Stability of Random Nonlinear Deep-Water Waves With Finite Bandwidth Spectra
,”
TRW, Defense and Space System Group
,
Euclid, OH
,
Technical Report No. 31326-6035-RU-00
.
78.
Fedele
,
F.
,
Brennan
,
J.
,
De León
,
S. P.
,
Dudley
,
J.
, and
Dias
,
F.
,
2016
, “
Real World Ocean Rogue Waves Explained Without the Modulational Instability
,”
Sci. Rep.
,
6
(
1
), p.
27715
. 10.1038/srep27715
79.
Gibson
,
R. S.
, and
Swan
,
C.
,
2006
, “
The Evolution of Large Ocean Waves: The Role of Local and Rapid Spectral Changes
,”
Proc. R. Soc. Lond.
,
463
(
2077
), pp.
21
48
. 10.1098/rspa.2006.1729
80.
Ma
,
Y.
,
Dong
,
G.
,
Liu
,
S.
,
Zang
,
J.
,
Li
,
J.
, and
Sun
,
Y.
,
2009
, “
Laboratory Study of Unidirectional Focusing Waves in Intermediate Depth Water
,”
J. Eng. Mech.
,
136
(
1
), pp.
78
90
. 10.1061/(ASCE)EM.1943-7889.0000076
You do not currently have access to this content.