Abstract

An industrial-academic collaboration between Rosetti Marino shipyard and University of Genoa presided over a deep theoretical and experimental insight into the maneuvering performances of a new escort tug family. The presented z-drive azimuthal stern drive class is characterized by high intact/damage stability margins, good maneuvering capability, and stable behavior during escort indirect assistance. The project addresses three main research areas: hydrodynamic design of the hull with escort capability, simulation of the escort capabilities in different operational scenario, and development of control logics that will allow autonomous or unmanned operations. The tug design concept is supported by a customized simulation tool that enables the evaluation of the free-sailing and towing maneuvering characteristics for Azimuth Stern Drive (ASD) tugs at high–speed (Escort) and low speed (Harbor Assistance) in a real-time environment. The paper describes the methodological approach adopted for the design and maneuvering characterization of such a class, across some preliminary results. Computational fluid dynamics (CFD) calculations and towing tank tests have been performed onto a prototype tug hull in order to assess the hull design and to infer simulation models able to describe the behavior of a family of vessels. In particular, the propulsion and maneuverability aspects in escort operations are deeply investigated.

References

References
1.
Martelli
,
M.
,
2015
,
Marine Propulsion Simulation
,
Walter de Gruyter GmbH
, pp.
1
104
.
2.
Altosole
,
M.
, and
Martelli
,
M.
,
2017
, “
Propulsion Control Strategies for Ship Emergency Manoeuvres
,”
Ocean Eng.
,
137
, pp.
99
109
. 10.1016/j.oceaneng.2017.03.053
3.
Allan
,
R. G.
,
Smokers
,
B.
,
Shivers
,
M.
,
den Hertog
,
V.
, and
Newbury
,
S.
,
2019
, “
Escort Tug Safety: Accounting for Dynamic Scenarios in Design and Operations
,”
Proceedings of the TUGNOLOGY’19 Conference
,
Liverpool, UK
,
May 14–15
,
Paper No. 5
.
4.
Gaggero
,
S.
,
Villa
,
D.
, and
Viviani
,
M.
,
2017
, “
An Extensive Analysis of Numerical Ship Self-Propulsion Prediction Via a Coupled BEM/RANS Approach
,”
Appl. Ocean Res.
,
66
, pp.
55
78
. 10.1016/j.apor.2017.05.005
5.
Bruzzone
,
D.
,
Ruscelli
,
D.
,
Villa
,
D.
, and
Viviani
,
M.
,
2015
, “
Numerical Prediction of Hull Force for Low Velocity Manoeuvring
,”
Proceedings of the 18th International Conference on Ships and Shipping Research (NAV 2015)
,
M.
Altosole
and
A.
Francescutto
, eds.,
Lecco, Italy
,
June 24–26
, pp.
284
295
.
6.
Villa
,
D.
,
Viviani
,
M.
,
Gaggero
,
S.
,
Vantorre
,
M.
,
Eloot
,
K.
, and
Delefortrie
,
G.
,
2019
, “
CFD-Based Analyses for a Slow Speed Manoeuvrability Model
,”
J. Mar. Sci. Technol.
,
24
(
3
), pp.
871
883
. 10.1007/s00773-018-0593-8
7.
Coppedè
,
A.
,
Gaggero
,
S.
,
Vernengo
,
G.
, and
Villa
,
D.
,
2019
, “
Hydrodynamic Shape Optimization by High Fidelity CFD Solver and Gaussian Process Based Response Surface Method
,”
Appl. Ocean Res.
,
90
, p.
101841
. 10.1016/j.apor.2019.05.026
8.
Peri
,
D.
, and
Campana
,
E. F.
,
2003
, “
Multidisciplinary Design Optimization of a Naval Surface Combatant
,”
J. Ship Res.
,
47
, pp.
1
12
.
9.
Larsson
,
L.
,
Stern
,
F.
,
Visonneau
,
M.
,
Hirata
,
N.
,
Hino
,
T.
, and
Kim
,
J.
,
2015
, “
Workshop on CFD in Ship Hydrodynamics
,”
Proceedings of the Tokyo 2015 Workshop—A Workshop on CFD in Ship Hydrodynamics
,
Tokyo
,
Dec. 2–4
, Vol.
2
, No.
1
.
10.
Rieu
,
V.
,
2017
, “
Self-Propulsion and Bollard Pull Tests 30 m Escort Tug
,”
Force 117-24115 Report N.1
,
Force Technology
.
11.
Donnarumma
,
S.
,
Figari
,
M.
,
Martelli
,
M.
,
Vignolo
,
S.
, and
Viviani
,
M.
,
2017
, “
Design and Validation of Dynamic Positioning for Marine Systems: A Case Study
,”
IEEE J. Ocean. Eng.
,
43
(
3
), pp.
677
688
. 10.1109/joe.2017.2732298
12.
Martelli
,
M.
, and
Figari
,
M.
,
2017
, “
Real-Time Model-Based Design for CODLAG Propulsion Control Strategies
,”
Ocean Eng.
,
141
, pp.
265
276
. 10.1016/j.oceaneng.2017.06.029
13.
Geertsma
,
R. D.
,
Negenborn
,
R. R.
,
Visser
,
K.
, and
Hopman
,
J. J.
,
2017
, “
Design and Control of Hybrid Power and Propulsion Systems for Smart Ships: A Review of Developments
,”
Appl. Energy
,
194
, pp.
30
54
. 10.1016/j.apenergy.2017.02.060
14.
Stapersma
,
D.
, and
Vrijdag
,
A.
,
2017
, “
Linearisation of a Ship Propulsion System Model
,”
Ocean Eng.
,
142
, pp.
441
457
. 10.1016/j.oceaneng.2017.07.014
15.
Michetti
,
S.
,
Ratto
,
M.
,
Spadoni
,
A.
,
Figari
,
M.
,
Altosole
,
M.
, and
Marcilli
,
G.
,
2010
, “
Ship Control System Wide Integration and the Use of Dynamic Simulation Techniques in the Fremm Project
,”
International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion, ESARS 2010
,
Article Number 5665266
.
16.
Baldi
,
F.
,
Theotokatos
,
G.
, and
Andersson
,
K.
,
2015
, “
Development of a Combined Mean Value-Zero Dimensional Model and Application for a Large Marine Four-Stroke Diesel Engine Simulation
,”
Appl. Energy
,
154
, pp.
402
415
. 10.1016/j.apenergy.2015.05.024
17.
Cichowicz
,
J.
,
Theotokatos
,
G.
, and
Vassalos
,
D.
,
2015
, “
Dynamic Energy Modelling for Ship Life-Cycle Performance Assessment
,”
Ocean Eng.
,
110
, pp.
49
61
. 10.1016/j.oceaneng.2015.05.041
18.
Piaggio
,
B.
,
Viviani
,
M.
, and
Martelli
,
M.
,
2018
, “
Escort Tug Hydrodynamic Forces Estimation in a Design Framework: From Model Test to Manoeuvrability Simulation
,
Madrid
, No. OMAE2018-78052.
19.
Piaggio
,
B.
,
Martelli
,
M.
,
Viviani
,
M.
, and
Figari
,
M.
,
2017
, “
Manoeuvring Model and Simulation of the Non-Linear Dynamic Interaction Between Tethered Ship and Tug During Escort
,”
Proceeding of Maritime Transportation and Exploitation of Sea Resources
,
Lisbon
,
Oct. 9–11
,
Paper No. OMAE2018-78052
.
20.
Altosole
,
M.
,
Benvenuto
,
G.
,
Campora
,
U.
,
Laviola
,
M.
, and
Zaccone
,
R.
,
2017
, “
Simulation and Performance Comparison Between Diesel and Natural Gas Engines for Marine Applications
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
,
231
(
2
), pp.
690
704
. 10.1177/1475090217690964
You do not currently have access to this content.