Abstract

To research the stern flap (SF) and waterjet–hull interaction, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for a waterjet-propelled trimaran considering sinkage and trim are performed. Uncertainty analysis of the numerical results for the bare hull (BH) model is presented. At the design speed Froude number (Fr) of 0.6 and under displacement state, the model-scaled trimaran, installed with stern flaps of varied angle and length, tests the BH and self-propulsion (SP) performance based on URANS simulations. For the resistance, the global effects due to motions and the local effects of SF, waterjets (WJ), and the coupled term between SF and WJ on the hull are separately analyzed. Taking the waterjet propulsion system into account, an SP model with reasonable stern flap effectively reduces the trim, the resistance acting on the hull and the waterjet thrust deduction which contributes to energy-saving and high-efficiency propulsion. The mechanism of the improved performance of the waterjet-propelled trimaran with stern flaps is discussed. For the resistance increment, the global effects, the local effects of SF and WJ are the major reason for resistance increase, and the nonlinear coupled term of local effects contributes to the resistance reduction most. In addition, the different resistance components of frictional, hydrostatic, and hydrodynamic are separately researched, which shows that the pressure resistance components plays a leading role in the total resistance reduction in the SP model with the suitable SF.

References

References
1.
Karafiath
,
G.
, and
Fisher
,
S. C.
,
1987
, “
The Effect of Stern Wedges on Ship Powering Performance
,”
Nav. Eng. J.
,
99
(
3
), pp.
27
38
. 10.1111/j.1559-3584.1987.tb02113.x
2.
Cusanelli
,
D. S.
,
1989
,
Effects of Various Stern Wedges, Trim Flaps, and a Stern Extension, on the Resistance and Powering of FFG-7 Class Frigates, as Represented by Dtrc Model 5279-1
,
David W. Taylor Navel Ship Research and Development Center
,
Bethesda, MD
.
3.
Tsai
,
J. F.
,
Hwang
,
J. L.
, and
Chou
,
S. K.
,
2004
, “
Study on the Compound Effects of Interceptor With Stern Flap for Two Fast Monohulls
,”
MTTS/IEEE Techno-Ocean 2
,
Kobe, Japan
,
Nov. 9–12
, pp.
1023
1028
.
4.
John
,
S.
,
Kareem Khan
,
M. D.
,
Praveen
,
P. C.
,
Manu
,
K.
, and
Panigrahi
,
P. K.
,
2011
, “
Hydrodynamic Performance Enhancement Using Stern Wedges, Stern Flaps and Interceptors for Ships
,”
ICSOT INDIA, 2011
,
Kharagpur, India
,
Dec. 8–9
.
5.
Dong
,
W. C.
, and
Yao
,
C. B.
,
2011
, “
Study on Resistance Prediction Method and Resistance Reduction Mechanism of Medium and High Speed Deep-Vee Ship by Stern Flap
,”
J. Harbin Eng. Univ.
,
32
(
7
), pp.
848
852
.
6.
Amacher
,
R.
,
Liechti
,
T. C.
,
Pfister
,
M.
,
De Cesare
,
G.
, and
Schleiss
,
A. J.
,
2015
, “
Wave-Reducing Stern Flap on Ship Convoys to Protect Riverbanks
,”
Nav. Eng. J.
,
127
(
1
), pp.
95
102
.
7.
Maki
,
A.
,
Arai
,
J.
,
Tsutsumoto
,
T.
,
Suzuki
,
K.
, and
Miyauchi
,
T.
,
2016
, “
Fundamental Research on Resistance Reduction of Surface Combatants Due to Stern Flaps
,”
J. Mar. Sci. Technol.
,
21
(
2
), pp.
344
358
. 10.1007/s00773-015-0356-8
8.
Mansoori
,
M.
,
Fernandes
,
A. C.
, and
Ghassemi
,
H.
,
2017
, “
Interceptor Design for Optimum Trim Control and Minimum Resistance of Planing Boats
,”
Appl. Ocean Res.
,
69
, pp.
100
115
. 10.1016/j.apor.2017.10.006
9.
Mansoori
,
M.
, and
Fernandes
,
A. C.
,
2017
, “
Interceptor and Trim Tab Combination to Prevent Interceptor's Unfit Effects
,”
Ocean Eng.
,
134
, pp.
140
156
. 10.1016/j.oceaneng.2017.02.024
10.
Guo
,
C. Y.
,
Song
,
K. W.
,
Gong
,
J.
, and
Jing
,
T.
,
2018
, “
Influence of Interceptor on Deep-V Ship's Resistance Performance
,”
J. Harbin Eng. Univ.
,
39
(
2
), pp.
215
221
.
11.
Song
,
K. W.
,
Guo
,
C. Y.
,
Gong
,
J.
,
Li
,
P.
, and
Wang
,
L. Z.
,
2018
, “
Influence of Interceptors, Stern Flaps, and Their Combinations on the Hydrodynamic Performance of a Deep-Vee Ship
,”
Ocean Eng.
,
170
, pp.
306
320
. 10.1016/j.oceaneng.2018.10.048
12.
ITTC, 21st.
,
1996
, “
The Specialist Committee on Waterjets: Final Report and Recommendations to the 21st ITTC
,”
Proceedings of The 21st International Towing Tank Conference
,
Trondheim, Norway
,
Sept. 15–21
.
13.
ITTC, 22nd.
,
1999
, “
The Specialist Committee on Waterjets: Final Report and Recommendations to the 22nd ITTC
,”
Proceedings of The 22nd International Towing Tank Conference
,
Shanghai, China
,
Sept. 5–11
.
14.
ITTC, 23rd.
,
2002
, “
The Specialist Committee on Validation of Waterjet Test Procedures: Final Report and Recommendations to the 23rd ITTC
,”
Proceedings of the 23rd International Towing Tank Conference
,
Venice, Italy
,
Sept. 8–14
.
15.
ITTC, 24th.
,
2005
, “
The Specialist Committee on Validation of Waterjet Test Procedures: Final Report and Recommendations to the 24th ITTC
,”
Proceedings of The 24th International Towing Tank Conference
,
Edinburgh, UK
,
Sept. 4–10
.
16.
Park
,
W. G.
,
Jang
,
J. H.
,
Chun
,
H. H.
, and
Kim
,
M. C.
,
2004
, “
Numerical Flow and Performance Analysis of Waterjet Propulsion System
,”
Ocean Eng.
,
32
(
14
), pp.
1740
1761
.
17.
Park
,
W. G.
,
Yun
,
H. S.
,
Chun
,
H. H.
, and
Kim
,
M. C.
,
2005
, “
Numerical Flow Simulation of Flush Type Intake Duct of Waterjet
,”
Ocean Eng.
,
32
(
17
), pp.
2107
2120
. 10.1016/j.oceaneng.2005.03.001
18.
Takai
,
T.
,
Kandasamy
,
M.
, and
Stern
,
F.
,
2011
, “
Verification and Validation Study of URANS Simulations for an Axial Waterjet Propelled Large High-Speed Ship
,”
J. Mar. Sci. Technol.
,
16
(
4
), pp.
434
447
. 10.1007/s00773-011-0138-x
19.
Eslamdoost
,
A.
,
2014
, “
The Hydrodynamics of Waterjet/Hull Interaction
,”
PhD thesis
,
Chalmers University of Technology
,
Chalmers, Sweden
.
20.
Eslamdoost
,
A.
,
Larsson
,
L.
, and
Bensow
,
R.
,
2014
, “
A Pressure Jump Method for Modeling Waterjet/Hull Interaction
,”
Ocean Eng.
,
88
, pp.
120
130
. 10.1016/j.oceaneng.2014.06.014
21.
Qiu
,
J. T.
,
Yang
,
C. J.
,
Dong
,
X. Q.
,
Wang
,
Z. L.
,
Li
,
W.
, and
Noblesse
,
F.
,
2018
, “
Numerical Simulation and Uncertainty Analysis of an Axial-Flow Waterjet Pump
,”
J. Mar. Sci. Eng.
,
6
(
2
), p.
71
. 10.3390/jmse6020071
22.
Gong
,
J.
,
Guo
,
C. Y.
,
Song
,
K. W.
, and
Wu
,
T. C.
,
2019
, “
SPIV Measurements and URANS Simulations on the Inlet Velocity Distribution for a Waterjet-Propelled Ship With Stabiliser Fins
,”
Ocean Eng.
,
171
, pp.
120
130
. 10.1016/j.oceaneng.2018.11.002
23.
Van
,
T. T.
,
1996
, “
Waterjet-Hull Interaction
,”
PhD thesis
,
Delft Technical University
,
Delft, The Netherlands
.
24.
Roy
,
J.
,
Heintzelman
,
C.
, and
Roberts
,
S.
,
2007
, “
Estimation of Numerical Error for 3D Inviscid Flows on Cartesian Grids
,”
45th AIAA Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 8–11
.
25.
Zhang
,
L.
,
Zhang
,
J. N.
, and
Shang
,
Y. C.
,
2019
, “
A Potential Flow Theory and Boundary Layer Theory Based Hybrid Method for Waterjet Propulsion
,”
J. Mar. Sci. Eng.
,
7
(
4
), p.
113
. 10.3390/jmse7040113
26.
Zhang
,
L.
,
Zhang
,
J. N.
,
Shang
,
Y. C.
,
Dong
,
G. X.
, and
Chen
,
W. M.
,
2019
, “
Numerical Method for Waterjet Thrust of Trimaran Considering Pressure Jump
,”
J. Harbin Eng. Univ.
,
40
(
09
), pp.
1582
1588
.
27.
Eslamdoost
,
A.
,
Larsson
,
L.
, and
Bensow
,
R.
,
2018
, “
Analysis of the Thrust Deduction in Waterjet Propulsion–The Froude Number Dependence
,”
Ocean Eng.
,
152
, pp.
100
112
. 10.1016/j.oceaneng.2018.01.037
28.
Sakamoto
,
N.
,
Kawanami
,
Y.
,
Uto
,
S.
, and
Sasaki
,
N.
,
2013
, “
Estimation of Resistance and Self-Propulsion Characteristics for low l/b Twin-Skeg Container Ship by a High-Fidelity Rans Solver
,”
J. Ship Res.
,
57
(
1
), pp.
24
41
. 10.5957/JOSR.57.1.110032
29.
Jin
,
Y. T.
,
Duffy
,
J.
,
Chai
,
S. H.
, and
Magee
,
A. R.
,
2019
, “
DTMB 5415M Dynamic Manoeuvres With URANS Computation Using Body-Force and Discretised Propeller Models
,”
Ocean Eng.
,
182
, pp.
305
317
. 10.1016/j.oceaneng.2019.04.036
30.
Broglia
,
R.
,
Dubbioso
,
G.
,
Durante
,
D.
, and
Mascio
,
A. D.
,
2013
, “
Simulation of Turning Circle by CFD: Analysis of Different Propeller Models and Their Effect on Manoeuvring Prediction
,”
Appl. Ocean Res.
,
39
, pp.
1
10
. 10.1016/j.apor.2012.09.001
31.
Dubbioso
,
G.
,
Broglia
,
R.
, and
Zaghi
,
S.
,
2017
, “
CFD Analysis of Turning Abilities of a Submarine Model
,”
Ocean Eng.
,
129
, pp.
459
479
. 10.1016/j.oceaneng.2016.10.046
32.
STAR-CCM+
,
2018
,
STAR-CCM+ User Guide, Version 13.06
,
Simens
,
Plano, TX
.
33.
Tezdogan
,
T.
,
Incecik
,
A.
, and
Turan
,
O.
,
2016
, “
Full-Scale Unsteady RANS Simulations of Vertical Ship Motions in Shallow Water
,”
Ocean Eng.
,
123
, pp.
131
145
. 10.1016/j.oceaneng.2016.06.047
34.
Kianejad
,
S. S.
,
Lee
,
J.
,
Liu
,
Y.
, and
Enshaei
,
H.
,
2018
, “
Numerical Assessment of Roll Motion Characteristics and Damping Coefficient of a Ship
,”
J. Mar. Sci. Eng.
,
6
(
3
), p.
101
. 10.3390/jmse6030101
35.
Marco
,
D. A.
,
Mancini
,
S.
,
Miranda
,
S.
,
Scognamiglio
,
R.
, and
Vitiello
,
L.
,
2017
, “
Experimental and Numerical Hydrodynamic Analysis of a Stepped Planning Hull
,”
Appl. Ocean Res.
,
64
, pp.
135
154
. 10.1016/j.apor.2017.02.004
You do not currently have access to this content.