Abstract

Dynamic analysis of floating wind turbines often considers the hull as a rigid body. This paper explores the consequences of modeling the pontoons of a tension leg platform (TLP) wind turbine as flexible beams. The analysis is based on numerical simulations of free decays, structural response to wave excitation, and short-term fatigue damage accumulation at tower base and tendons. In addition, the importance of hydroelastic effects due to the pontoons’ vertical deformations is evaluated. Pontoon flexibility changed the platform natural periods and motion amplitude significantly, and the adoption of flexible pontoons reduced the predicted fatigue damage in the tower base and tendons. On the other hand, hydroelasticity had negligible consequences for motion and load responses considered here.

References

References
1.
Tracy
,
C. H.
,
2007
, “
Parametric Design of Floating Wind Turbines
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Matha
,
D.
,
2009
, “
Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform, With a Comparison to Other Floating Turbine Concepts
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
3.
Henderson
,
A. R.
,
Argyriadis
,
K.
,
Nichols
,
J.
, and
Langston
,
D.
,
2010
, “
Offshore Wind Turbines on TLPs—Assessment of Floating Support Structures for Offshore Wind Farms in German Waters
,”
10th German Wind Energy Conference
,
Bremen, Germany
,
Nov. 17–18
.
4.
Bachynski
,
E. E.
, and
Moan
,
T.
,
2012
, “
Design Considerations for Tension Leg Platform Wind Turbines
,”
Marine Struct.
,
29
(
1
), pp.
89
114
. 10.1016/j.marstruc.2012.09.001
5.
Oguz
,
E.
,
Clelland
,
D.
,
Day
,
A. H.
,
Incecik
,
A.
,
López
,
J. A.
,
Sánchez
,
G.
, and
Alez Almeria
,
G. G.
,
2018
, “
Experimental and Numerical Analysis of a TLP Floating Offshore Wind Turbine
,”
Ocean Eng.
,
147
, pp.
591
605
. 10.1016/j.oceaneng.2017.10.052
6.
Hofmann
,
M.
, and
Sperstad
,
I. B.
,
2014
, “
Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?
,”
Energy Procedia
,
53
(
Supplement C
), pp.
231
238
, EERA DeepWind’ 2014, 11th Deep Sea Offshore Wind R&D Conference. 10.1016/j.egypro.2014.07.232
7.
Zhao
,
Y.
,
Yang
,
J.
, and
He
,
Y.
,
2012
, “
Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine
,”
Energies
,
5
(
10
), pp.
3874
3891
. 10.3390/en5103874
8.
Svendsen
,
K.
,
2016
, “
Structural Design and Dynamic Analysis of a Tension Leg Platform Wind Turbine, Considering Elasticity in the Hull
,” Master’s thesis,
Norwegian University of Science and Technology/TU Delft
,
Delft, The Netherlands
.
9.
Pegalajar-Jurado
,
A.
,
Madsen
,
F.
,
Borg
,
M.
, and
Bredmose
,
H.
,
2018
, “
LIFES50+ - D4.5 State-of-the-Art Models for the Two LIFES50+ 10 MW Floater Concepts
,”
Technical University of Denmark
, Technical Report.
10.
Faltinsen
,
O.M.
,
2015
, “
Hydrodynamics of Marine and Offshore Structures
,”
J. Hydrodyn.
,
26
(
6
), pp.
835
847
. https://doi.org/10.1016/S1001-6058
11.
Fujikubo
,
M.
,
2005
, “
Structural Analysis for the Design of VLFS
,”
Marine Struct.
,
18
(
2
), pp.
201
226
. 10.1016/j.marstruc.2005.07.005
12.
Borg
,
M.
,
Hansen
,
A. M.
, and
Bredmose
,
H.
,
2016
, “
Floating Substructure Flexibility of Large-Volume 10 MW Offshore Wind Turbine Platforms in Dynamic Calculations
,”
J. Phys. Conf. Ser.
,
753
, p.
082024
. 10.1088/1742-6596/753/8/082024
13.
Borg
,
M.
,
Bredmose
,
H.
, and
Hansen
,
A. M.
,
2017
, “
Elastic Deformations of Floaters for Offshore Wind Turbines: Dynamic Modelling and Sectional Load Calculations
,”
Proceedings of the ASME 2017 36th International Conference on Ocean
,
Trondheim, Norway
,
June 25–30
.
14.
Jonkman
,
J.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,”
National Renewable Energy Laboratory, CO
, Technical Report No. NREL/TP-500-47535.
15.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,”
National Renewable Energy Laboratory, CO
, Technical Report No. NREL/TP-500-38060.
16.
Wamit
,
I.
,
2006
,
WAMIT User Manual
,
Chestnut Hill
,
PA
.
17.
Ogilvie
,
T. F.
,
1964
, “
Recent Progress Toward the Understanding and Prediction of Ship Motions
,”
David W. Taylor Model Basin
,
WA, D.C.
, Technical Report.
18.
Cummins
,
W. E.
,
1962
, “
The Impulse Response and Ship Motions
,”
Symposium on Ship Theory
,
Hamburg, Germany
,
Jan. 25–27
.
19.
Faltinsen
,
O.M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
20.
SINTEF OCEAN
,
2016
, “
RIFLEX—Theory manual
.”
21.
SINTEF OCEAN
,
2016
, “
SIMO—Theory manual
.”
22.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons, Ltd
,
New York
.
23.
Hansen
,
M.
,
2013
,
Aerodynamics of Wind Turbines
,
Earthscan
,
London
.
24.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Joint Environmental Data at Five European Offshore Sites for Design of Combined Wind and Wave Energy Devices
,”
Proceedings of the ASME 2013 32nd International Conference on Ocean
,
Nantes, France
,
June 9–14
.
25.
Jonkman
,
B. J.
, and
Kilcher
,
L.
,
2012
, “
Turbsim User’s Guide: Version 1.06.00
,”
National Renewable Energy Laboratory
, Technical Report.
26.
DNV-GL
,
2016
,
Fatigue Design of Offshore Steel Structures (DNVGL-RP-C203)
,
DNV GL AS
.
27.
Newman
,
J.
,
1994
, “
Wave Effects on Deformable Bodies
,”
Appl. Ocean Res.
,
16
(
1
), pp.
47
59
. 10.1016/0141-1187(94)90013-2
28.
WAFO-Group
,
2017
, “
WAFO—A Matlab Toolbox for Analysis of Random Waves and Loads—A Tutorial for Version 2017
,”
Mathematical Sciences, Center for Mathematical Sciences, Lund University
,
Lund, Sweden
.
You do not currently have access to this content.