Abstract

In this study, effects of damage levels of fiber ropes on the performance of a hybrid taut-wire mooring system are investigated. The analysis is performed using a numerical floating production storage and offloading (FPSO) model with a hybrid mooring system installed in 3000 m of water depth. An in-depth study was conducted using the numerical model, the dynamic stiffness equation of damaged fiber ropes, the time-domain dynamic theory, the rainflow cycle counting method, and the linear damage accumulation rule of Palmgren-Miner. Results indicate that, in a mooring line with an increasing damage level, the maximum tension decreases, while the offset of the FPSO increases. Particularly, when a windward mooring line failure occurs, in addition to the significant increase in the offset of the FPSO, the maximum tension, tension range, and annual fatigue damage levels of the remaining lines adjacent to the failed also increase significantly. The present work can be of great benefit to the evaluation of the offset of the floating platform, the tension response, and the service life of the hybrid mooring systems.

References

References
1.
Del Vecchio
,
C. J. M.
,
1992
, “
Light Weight Materials for Deep Water Moorings
,” Ph.D. thesis,
Reading University
.
2.
Ma
,
K. T.
,
Duggal
,
A.
,
Smedley
,
P.
,
L’Hostis
,
D.
, and
Shu
,
H. B.
,
2013
, “
A Historical Review on Integrity Issues of Permanent Mooring Systems
,”
Proceeding of the 45th Annual Offshore Technology Conference
, OTC 24025.
3.
Liu
,
H. X.
,
Li
,
Z.
, and
Zhang
,
Y. M.
,
2015
, “
An Overview of Positioning Technologies for Large Floating Structures in Deep Waters
,”
Proceedings of the International Conference on Underwater Science, Technology and Education
,
Hong Kong
,
Aug. 20
, pp.
46
51
.
4.
Lian
,
Y. S.
,
Zheng
,
J. H.
,
Liu
,
H. X.
, and
Xu
,
P. F.
,
2018
, “
A Study of the Creep-Rupture Behavior of HMPE Ropes Using Viscoelastic-Viscoplastic-Viscodamage Modeling
,”
Ocean Eng.
,
162
(
8
), pp.
43
54
. 10.1016/j.oceaneng.2018.05.003
5.
Banfield
,
S.
, and
Casey
,
N.
,
1998
, “
Evaluation of Fiber Rope Properties for Offshore Mooring
,”
Ocean Eng.
,
25
(
10
), pp.
861
879
. 10.1016/S0029-8018(97)10017-8
6.
Petruska
,
D. J.
,
Kelly
,
P.
,
Stone
,
B.
,
Ahjem
,
V.
,
Zimmerman
,
E. H.
,
Garrity
,
R.
, and
Veselis
,
T.
,
2010
, “
Fiber Moorings, Recent Experiences and Research: Updating API RP 2SM on Synthetic Fiber Rope for Offshore Moorings
,”
Proceedings of the 42nd Annual Offshore Technology Conference
, OTC 20836.
7.
Davies
,
P.
,
Francois
,
M.
,
Grosjean
,
F.
,
Baron
,
P.
,
Salomon
,
K.
, and
Trassoudaine
,
D.
,
2002
, “
Synthetic Mooring Lines for Depths to 3000 Meters
,”
Proceedings of the 34th Offshore Technology Conference
,
Houston, TX
, OTC 14246.
8.
Chi
,
C. H.
,
Lundhild
,
E. M.
,
Veselis
,
T.
, and
Huntley
,
M. B.
,
2009
, “
Enabling Ultra-Deepwater Mooring With Aramid Fiber Rope Technology
,”
Proceedings of the 41st Annual Offshore Technology Conference
,
Houston, TX
, OTC 20074.
9.
Vlasblom
,
M. P.
,
Boesten
,
J.
,
Leite
,
S.
, and
Davies
,
P.
,
2012
, “
Development of HMPE Fiber for Permanent Deepwater Offshore Mooring
,”
Proceedings of the 44th Offshore Technology Conference
,
Houston, TX
, OTC 23333.
10.
Lian
,
Y. S.
,
Liu
,
H. X.
,
Huang
,
W.
, and
Li
,
L. A.
,
2015
, “
A Creep-Rupture Model of Synthetic Fiber Ropes for Deepwater Moorings Based on Thermodynamics
,”
Appl. Ocean Res.
,
52
(
8
), pp.
234
244
. 10.1016/j.apor.2015.06.009
11.
Lian
,
Y. S.
,
Zheng
,
J. H.
, and
Liu
,
H. X.
,
2018
, “
An Investigation on Creep and Creep-Rupture Behaviors of HMPE Ropes
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
2
), p.
021401
. 10.1115/1.4038345
12.
Garrity
,
R.
, and
Fronzaglia
,
W.
,
2008
, “
The Use of HMPE Mooring Lines in Deepwater MODU Mooring Systems
,”
Proceedings of the OCEANS’08 MTS/IEEE Conference
,
Quebec City, Canada
,
Sept. 15–18
, pp.
620
624
.
13.
Leite
,
S.
, and
Boesten
,
J.
,
2011
, “
HMPE Mooring Lines for Deepwater MODUs
,”
Proceedings of the 43rd Offshore Technology Conference
,
Houston, TX
, Paper No. 22486.
14.
Yuan
,
Z. M.
,
Incecik
,
A.
, and
Ji
,
C.
,
2014
, “
Numerical Study on a Hybrid Mooring System With Clump Weights and Buoys
,”
Ocean Eng.
,
88
(
1
), pp.
1
11
. 10.1016/j.oceaneng.2014.06.002
15.
Lian
,
Y. S.
,
Liu
,
H. X.
, and
Hu
,
L. M.
,
2015
, “
Feasibility Analysis of a New Hybrid Mooring System Applied for Deep Waters
,”
Proceedings of the 25th International Offshore and Polar Engineering Conference
,
Kailua-Kona
, Paper No. ISOPE-I-15-297.
16.
Lugsdin
,
A.
,
2012
, “
Real-Time Monitoring of FPSO Mooring Lines, Risers
,”
Sea Technol.
,
53
(
7
), pp.
21
23
.
17.
Gordon
,
R. B.
,
Brown
,
M. G.
, and
Allen
,
E. M.
,
2014
, “
Mooring Integrity Management: A State-of-the Art Review
,”
Proceedings of 46th Offshore Technology Conference
,
Houston, TX
, Paper No. OTC 25134-MS.
18.
Williams
,
J. G.
,
Miyase
,
A.
,
Li
,
D.
, and
Wang
,
S. S.
,
2002
, “
Small-Scale Testing of Damaged Synthetic Fiber Mooring Ropes
,”
Proceedings of 34th Offshore Technology Conference
,
Houston, TX
, Paper No. OTC 14308MS.
19.
Ward
,
E. G.
,
Ayres
,
R. R.
,
Banfield
,
S. J.
,
O’Hear
,
N.
, and
Laurendine
,
T.
,
2006
, “
The Residual Strength of Damaged Polyester Ropes
,”
Proceedings of 38th Offshore Technology Conference
,
Houston, TX
, Paper No. OTC 18150.
20.
Ward
,
E. G.
,
Ayres
,
R.
,
Banfield
,
S. J.
, and
O’Hear
,
N.
(
2006
). “
Full Scale Experiments on Damaged Polyester Rope
” Technical Report, JIP-FP-1,
Offshore Technology Research Center
.
21.
Flory
,
J.
,
2008
, “
Assessing Strength Loss of Abraded and Damaged Fiber Rope
,”
Proceedings of the OCEANS 2008—MTS/IEEE Conference
,
Kobe, Japan
,
Sept. 15–18
, pp.
126
138
.
22.
Liu
,
H. X.
,
Lian
,
Y. S.
,
Li
,
L. A.
, and
Zhang
,
Y. M.
,
2015
, “
Experimental Investigation on Dynamic Stiffness of Damaged Synthetic Fiber Ropes for Deepwater Moorings
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061401
. 10.1115/1.4031392
23.
Huang
,
W.
,
Liu
,
H. X.
,
Shan
,
G. M.
, and
Hu
,
C.
,
2011
, “
Fatigue Analysis of the Taut-Wire Mooring System Applied for Deep Waters
,”
China Ocean Eng.
,
25
(
3
), pp.
413
426
. 10.1007/s13344-011-0034-5
24.
Qiao
,
D. S.
,
Yan
,
J.
, and
Ou
,
J. P.
,
2014
, “
Fatigue Analysis of Deepwater Hybrid Mooring Line Under Corrosion Effect
,”
Pol. Marit. Res.
,
21
(
3
), pp.
68
76
. 10.2478/pomr-2014-0032
25.
Ahmed
,
M. O.
,
Yenduri
,
A.
, and
Kurian
,
V. J.
,
2016
, “
Evaluation of the Dynamic Responses of Truss Spar Platforms for Various Mooring Configurations With Damaged Lines
,”
Ocean Eng.
,
123
(
1
), pp.
411
421
. 10.1016/j.oceaneng.2016.07.004
26.
Kim
,
M. S.
,
2004
, “
Dynamic Simulation of Polyester Mooring Line
,” Master thesis,
Texas AM University
,
Prairie View, TX
.
27.
Bureau Veritas (BV)
,
2007
,
Theoretical Manual of HydroStar
,
1st ed.
,
BV Press
,
Paris
.
28.
Bureau Veritas (BV)
,
2016
,
HydroStar for Experts User Manual
,
3rd ed.
,
BV Press
,
Paris
.
29.
Liu
,
H. X.
,
Huang
,
W.
,
Lian
,
Y. S.
, and
Li
,
L. A.
,
2014
, “
An Experimental Investigation on Nonlinear Behaviors of Synthetic Fiber Ropes for Deepwater Moorings Under Cyclic Loading
,”
Appl. Ocean Res.
,
45
, pp.
22
32
. 10.1016/j.apor.2013.12.003
30.
Lian
,
Y. S.
,
Liu
,
H. X.
,
Li
,
L. A.
, and
Zhang
,
Y. M.
,
2017
, “
An Experimental Investigation on Fatigue Behaviors of HMPE Ropes
,”
Ocean Eng.
,
139
, pp.
237
249
. 10.1016/j.oceaneng.2017.05.007
31.
Lian
,
Y. S.
,
Liu
,
H. X.
,
Li
,
L. A.
, and
Zhang
,
Y. M.
,
2018
, “
An Experimental Investigation on the Bedding-in Behavior of Synthetic Fiber Ropes
,”
Ocean Eng.
,
160
, pp.
368
381
. 10.1016/j.oceaneng.2018.04.071
32.
Det Norshke Veritas (DNV)
,
2008
,
Position Mooring Offshore Standard OS-E301
,
1st ed.
,
DNV Press
,
Oslo
.
33.
Bureau Veritas (BV)
,
2007
,
Theoretical Manual of Ariane 7
,
1st ed.
,
BV Press
,
Paris
.
34.
American Petroleum Institute (API)
,
2015
,
Design and Analysis of Stationkeeping Systems for Floating Structures
, API Recommended Practice 2SK,
3rd ed.
,
API Press
,
Washington, DC
.
35.
Ahmed
,
M. O.
,
Yenduri
,
A.
, and
Kurian
,
V. J.
,
2015
, “
Investigation on the Dynamic Responses of a Truss Spar Platform for Different Mooring Line Groups
,”
J. Marine Sci. Appl.
,
14
(
2
), pp.
189
195
. 10.1007/s11804-015-1301-2
36.
Cummins
,
W.
,
1962
,
The Impulse Response Function and Ship Motions
,
David Taylor Model Dasin (DTNSRDC)
,
Bethesda, MD
.
37.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
, “
Fatigue of Metals Subjected to Varying Stress
,”
Paper presented at Japan Society of Mechanical Engineers
, No.
68
(
2
),
Fukuoka
, pp.
37
40
.
38.
Rychlik
,
I.
,
1987
, “
A New Definition of the Rainflow Cycle Counting Method
,”
Int. J. Fatigue
,
9
(
2
), pp.
119
121
. 10.1016/0142-1123(87)90054-5
39.
Lee
,
Y. L.
, and
Tana
,
T.
,
2011
,
Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer-Aided Engineering
,
Butterworth-Heinemann Press
,
Waltham, MA
.
40.
Ragan
,
P.
, and
Manuel
,
L.
,
2007
, “
Comparing Estimates of Wind Turbine Fatigue Loads Using Time-Domain and Spectral Methods
,”
Wind Eng.
,
31
(
2
), pp.
83
99
. 10.1260/030952407781494494
41.
American Petroleum Institute (API)
,
2014
, “Recommended Practice for Design, Manufacture, Installation, and Maintenance of Synthetic Fiber Ropes for Offshore Mooring,”
API Recommended Practice 2SM
,
2nd ed.
,
API Press
,
Washington, DC
.
42.
Bureau Veritas (BV)
,
2007
,
Guidance Notes Certification of Fibre Ropes for Deepwater Offshore Services
,
BV Press
,
Paris
.
43.
American Bureau of Shipping (ABS)
,
2011
,
Guidance Notes on the Application of Fiber Rope for Offshore Mooring
,
Houston, TX
.
44.
Paik
,
J. K.
, and
Thayamballi
,
A. K.
,
2007
,
Ship-Shaped Offshore Installations: Design, Building, and Operation
,
Cambridge University Press
,
Cambridge
.
45.
DSM Dyneema
,
2009
,
Technical Brochure: Dyneema in Marine and Industrial Applications
,
DSM Dyneema Press
,
Geleen
.
You do not currently have access to this content.