Abstract

Extensive water entry experiments were performed to identify uncertainties associated with measured impact-induced loads acting on flat bottom ship structures. Of primary concern was the influence of air trapping on elastic structural deformations. The experimental measurements supplied the benchmark data suitable to validate computational fluid dynamics (CFD) predictions. Two bodies were tested. One body was fitted with stiffened, rigid bottom plating, and the other body was fitted with thin elastic plating. A large number of 30 repetitive runs recorded bottom pressures and forces acting on the flat bottom plating and monitored impact-induced elastic bottom strains. For each test case, high-speed videos of water entry sequences were evaluated. The resulting average peak values standard deviations quantified the uncertainty of these measurements.

References

References
1.
von Karman
,
T.
,
1929
,
The Impact on Seaplane Floats During Landing
,
Washington, DC
,
National Advisory Committee for Aeronautics Technical
, Note 321.
2.
Wagner
,
H.
,
1934
, “
Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten
,”
ZAMM - J. Appl. Math. Mech.
,
12
(
4
), pp.
193
215
. 10.1002/zamm.19320120402
3.
Chuang
,
S.-L.
,
1966
, “
Slamming of Rigid Wedge-Shaped Bodies With Various Deadrise Angles
,” Technical Report, DTIC.
4.
Chuang
,
S.-L.
,
1970
, “
Investigation of Impact of Rigid and Elastic Bodies With Water
,” Technical Report, DTIC.
5.
Okada
,
S.
, and
Sumi
,
Y.
,
2000
, “
On the Water Impact and Elastic Response of a Flat Plate at Small Impact Angles
,”
Mar. Sci. Technol.
,
62
(
1
), pp.
31
39
. 10.1007/s007730070019
6.
Luo
,
H. B.
,
Wang
,
H.
, and
Guedes Soares
,
C.
,
2013
, “
Numerical and Experimental Study of Hydrodynamic Impact and Elastic Response for One Free-Drop Wedge With Stiffened Panels
,”
Ocean Eng.
,
40
(
1
), pp.
1
14
. 10.1016/j.oceaneng.2011.11.004
7.
Wang
,
S.
, and
Guedes Soares
,
C.
,
2013
, “
Slam-Induced Loads on Bow-Flared Sections With Various Roll Angles
,”
Ocean Eng.
,
67
(
1
), pp.
45
57
. 10.1016/j.oceaneng.2013.04.009
8.
Wang
,
S.
,
Luo
,
H. B.
, and
Guedes Soares
,
C.
,
2014
, “
Numerical Prediction of Slamming Loads During Water Entry of a Bow-Flared Section
,”
Int. J. Marit. Eng.
,
156
(
Part A4
), pp.
A303
A314
.
9.
Huera-Huarte
,
F. J.
,
Jeon
,
D.
, and
Gharib
,
M.
,
2011
, “
Experimental Investigation of Water Slamming Loads on Panels
,”
Ocean Eng.
,
38
(
11–12
), pp.
1347
1355
. 10.1016/j.oceaneng.2011.06.004
10.
Lin
,
M.-C.
, and
Shieh
,
L.-D.
,
1997
, “
Simultaneous Measurements of Water Impact on a Two-Dimensional Body
,”
Fluid Dyn. Res.
,
19
(
3
), pp.
125
148
. 10.1016/S0169-5983(96)00033-0
11.
Portemont
,
G.
,
Deletombe
,
E.
, and
Drazetic
,
P.
,
2004
, “
Assessment of Basic Experimental Impact Simulations for Coupled Fluid/Structure Interaction Modeling
,”
Int. J. Crashworthiness
,
9
(
4
), pp.
333
339
. 10.1533/ijcr.2004.0293
12.
Shin
,
H.
,
Seo
,
N.
, and
Cho
,
S.-R.
,
2018
, “
Experimental Investigation of Slamming Impact Acted on Flat Nottom Bodies and Cumulative Damage
,”
Int. J. Nav. Archit. Ocean Eng.
,
10
(
3
), pp.
294
306
. 10.1016/j.ijnaoe.2017.06.004
13.
Storheim
,
M.
, and
Lian
,
G.
,
2018
, “
An Assessment
,”
Proceedings of 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June
, p.
V003T02A022
.
14.
Panciroli
,
R.
,
Abrate
,
S.
,
Minak
,
G.
, and
Zucchelli
,
A.
,
2012
, “
Hydroelasticity in Water-Entry Problems: Comparison Between Experimental and SPH Results
,”
Compos. Struct.
,
94
(
12
), pp.
532
539
. 10.1016/j.compstruct.2011.08.016
15.
Panciroli
,
R.
,
Abrate
,
S.
, and
Minak
,
G.
,
2013
, “
Dynamik Response of Flexible Wedges Entering the Water
,”
Compos. Struct.
,
99
(
1
), pp.
163
171
. 10.1016/j.compstruct.2012.11.042
16.
Iafrati
,
A.
,
Grizzi
,
S.
,
Siemann
,
M. H.
, and
Benítez Morales
,
L.
,
2015
, “
High-Speed Ditching of a Flat Plate: Experimental Data and Uncertainty Assessment
,”
J. Fluids Struct.
,
55
, pp.
501
525
. 10.1016/j.jfluidstructs.2015.03.019
17.
Battley
,
M.
,
Allen
,
T.
,
Pehrson
,
P.
,
Stenius
,
I.
, and
Rosén
,
A.
,
2009
, “
Effects of Panel Stiffness on Slamming Responses of Composite Hull Panels
,”
17th International Conference on Composite Materials, ICCM17
,
Edinburgh, Scotland
,
July
.
18.
Li
,
W.-P.
,
Liu
,
G.-R.
, and
Chan
,
W.-S.
,
2005
, “
Elasticity Effects on the Water Impact of an Elastic Flat-Bottom Box
,”
J. Hydrodyn.
,
14
(
2
), pp.
64
70
.
19.
Stenius
,
I.
,
Rosén
,
A.
, and
Kuttenkeuler
,
J.
,
2011
, “
Hydroelastic Interaction in Panel-Water Impacts of High-Speed Craft
,”
Ocean Eng.
,
38
(
2–3
), pp.
371
381
. 10.1016/j.oceaneng.2010.11.010
20.
Stenius
,
I.
,
Rosén
,
A.
,
Battley
,
M.
, and
Allen
,
T.
,
2013
, “
Experimental Hydroelastic Characterization of Slamming Loaded Marine Panels
,”
Ocean Eng.
,
74
(
1
), pp.
1
15
. 10.1016/j.oceaneng.2013.09.007
21.
Yan
,
F.
,
Zhang
,
C.
,
Sun
,
L.
, and
Zhang
,
D.
,
2015
, “
Experimental Study on Slamming Pressure and Hydroelastic Vibration of a Flat Plate During Water Entry
,”
J. Coastal Res.
,
73
(
sp1
), pp.
594
599
. 10.2112/SI1-103.1
22.
Yan
,
F.
,
Ma
,
Q.
, and
Sun
,
L.
,
2016
, “
On Slamming Pressure of Flat Elastic Plates With Different Aspect Ratios
,”
Coastal Eng. J.
,
58
(
3
), p.
1650015
. 10.1142/s0578563416500157
23.
Lewison
,
G.
, and
Maclean
,
W. M.
,
1968
, “
On the Cushioning of Water Impact by Entrapped Air
,”
J. Ship Res.
,
11
(
2
), pp.
116
130
.
24.
Mai
,
T.
,
Graeves
,
D.
, and
Raby
,
A.
,
2014
, “
Aeration Effects on Impact: Drop Test of a Flat Plate
,”
Proceedings of 24th International Ocean and Polar Engineering Conference.
,
Busan, Korea
,
June
, pp.
703
709
.
25.
Chung
,
J.
,
Nahm
,
H.
,
Kang
,
H.
, and
Kwon
,
S.
,
2007
, “
A Novel Experimental Technique in Slamming
,”
Proceedings 22nd International Workshop on Water Waves and Floating Bodies
,
Plitvice, Croatia
,
April
, pp.
15
18
.
26.
Oh
,
S.
,
Kwon
,
S.
, and
Chung
,
J.
,
2009
, “
A Close Look at Air Pocket Evolution in Flat Impact
,”
Proceedings of 24th International Workshop on Water Waves and Floating Bodies
,
Zelenogorsk, Russia
,
April
, pp.
19
22
.
27.
Van Nuffel
,
D.
,
Vepa
,
K. S.
,
De Baere
,
I.
,
Degrieck
,
J.
,
De Rouck
,
J.
, and
Van Paepegem
,
W.
,
2013
, “
Study on the Parameters Influencing the Accuracy and Reproducibility of Dynamic Pressure Measurements at the Surface of a Rigid Body During Water Impact
,”
Exp. Mech.
,
53
(
2
), pp.
131
144
. 10.1007/s11340-012-9619-z
28.
Tenzer
,
M.
,
el Moctar
,
O.
, and
Schellin
,
T. E.
,
2015
, “
Experimental Investigation of Impact Loads During Water Entry
,”
Ship Technol. Res.
,
62
(
1
), pp.
47
59
. 10.1179/0937725515Z.0000000003
29.
Potthoff
,
R.
,
2014
, “
Experimentelle und Numerische Untersuchung von Sloshing in Einem 2D Tank Unter Verwendung von Particle Image Velocimetry
,” Master thesis,
University of Duisburg-Essen
,
Duisburg, Germany
.
30.
Baumann
,
S.
,
2012
, “
Experimental Analysis of the Rigid and Hydroelastic Behavior of Wedge-Shaped Bodies due to Water Impact
,” Bachelor thesis,
University of Duisburg-Essen
,
Duisburg, Germany
.
31.
Ostermann
,
S.
,
2015
,
Anwendungstechnologie Aluminium
,
Springer-Verlag
,
Berlin
.
32.
Ensinger GmbH
, “
Technische Kunstsstoffe—Das Handbuch
,”
2015
.
33.
Neugebauer
,
J.
,
el Moctar
,
O.
, and
Potthoff
,
R.
,
2014
, “
Experimental and Numerical Investigation of Single Impacts in a 2D Tank
,”
Proceedings of 24th International Offshore and Polar Engineering Conference.
,
Busan, Korea
,
June
, pp.
286
295
.
34.
Lyu
,
W.
,
el Moctar
,
O.
,
Potthoff
,
R.
, and
Neugebauer
,
J.
,
2017
, “
Experimental and Numerical Investigation of Sloshing Using Different Free Surface Capturing Methods
,”
Appl. Ocean Res.
,
68
(
1
), pp.
307
324
. 10.1016/j.apor.2017.09.008
You do not currently have access to this content.