Abstract

The motivation and objective of the present study are to propose a hybrid control system for offshore jacket platforms to mitigate the vibrations induced by multiple hazards, namely, the earthquakes and regular and irregular waves. State-of-the-art indicates that not much work is reported on hybrid control of offshore jacket platforms for multiple hazards using a control algorithm, which is robust against uncertainties. A decentralized sliding mode control algorithm using magneto-rheological (MR) dampers is employed for the semi-active controller because of its robustness against parametric uncertainties and reliability. Passive shape memory alloy rubber bearings (SMARBs) are selected as passive isolators because of their high damping capacities, high fatigue resistance, and super elastic behavior, which are highly desirable for offshore applications. The scope of the present study is to demonstrate the efficiency of the proposed controller and investigate the effects of different influencing parameters. A jacket platform, reported in the literature, is taken as an illustrative example. A significant reduction in the top deck displacement is observed. The position and number of MR dampers affect the performance of the controller significantly. Limitations of the controller imposed due to the greater weightage or penalty imposed on displacements by the semi-active control algorithm as well as due to the magnetic saturation of MR dampers are overcome by the high energy dissipation of the passive SMARBs, thus making the hybrid controller highly efficient. The effectiveness of the controller is more for the earthquakes and random waves than for the regular waves.

References

References
1.
Raheem
,
S. E. A.
,
2014
, “
Nonlinear Behaviour of Steel Fixed Offshore Platform Under Environmental Loads
,”
J. Ship Offshore Struc.
,
11
(
1
), pp.
1
15
. 10.1080/17445302.2014.954301
2.
Gurpmar
,
A.
,
Gryspeert
,
B. J.
, and
Cole-Baker
,
J. R.
,
1980
, “
Dynamic Analysis of Offshore Platforms Under Seismic Excitations
,”
Proceedings of the 7WCEE
,
Istanbul, Turkey
,
Sept. 8–13
, pp.
375
382
.
3.
Zhang
,
B. L.
,
Han
,
Q. L.
, and
Zhang
,
X. M.
,
2017
, “
Recent Advances in Vibration Control of Offshore Platforms
,”
J. Nonlinear Dyn.
,
89
(
3
), pp.
755
771
. 10.1007/s11071-017-3503-4
4.
Kandasamy
,
R.
,
Cui
,
F.
,
Townsend
,
N.
,
Foo
,
C. C.
,
Guo
,
J.
,
Shenoi
,
A.
, and
Xiong
,
Y.
,
2016
, “
A Review of Vibration Control Methods for Marine Offshore Structures
,”
Ocean Eng.
,
127
, pp.
279
297
. 10.1016/j.oceaneng.2016.10.001
5.
Komachi
,
Y.
,
Tabeshpour
,
M. R.
,
Golafshani
,
A. A.
, and
Mualla
,
I.
,
2011
, “
Retrofit of Ressalat Jacket Platform (Persian Gulf) Using Friction Damper Device
,”
J. Zhejiang Univ.
,
12
(
9
), pp.
680
691
. 10.1631/jzus.A1000381
6.
Da-hai1
,
Z. D.
, and
Jing-lin
,
Z.
,
2014
, “
Vibration Control of Offshore Platform Structure With Friction Dampers
,”
Appl. Mech. Mater.
,
638
, pp.
318
321
.
7.
Mousavi
,
S. A.
,
Zahrai
,
S. M.
, and
Bargi
,
K.
,
2012
, “
Optimum Geometry of Tuned Liquid Column-Gas Damper for Control of Offshore Jacket Platform Vibrations Under Seismic Excitation
,”
J. Earthquake Eng. Eng. Vib.
,
11
(
4
), pp.
579
592
. 10.1007/s11803-012-0143-z
8.
Chandrasekaran
,
S.
,
Kumar
,
D.
, and
Ramanathan
,
R.
,
2013
, “
Dynamic Response of Tension Leg Platform With Tuned Mass Dampers
,”
J. Nav. Archit. Mar. Eng.
,
10
(
2
), pp.
149
156
. 10.3329/jname.v10i2.16184
9.
Wu
,
Q.
,
Zhao
,
X.
,
He
,
S.
,
Tang
,
W.
, and
Zheng
,
R.
,
2016
, “
A Bufferable Tuned-Mass Damper of an Offshore Platform Against Stroke and Response Delay Problems Under Earthquake Loads
,”
J. Shock Vib.
,
2016
, pp.
1
18
. 10.1155/2016/9702152
10.
Lin
,
C. S.
,
Liu
,
F.
,
Zhang
,
J.
, and
Lin
,
C. C.
,
2017
, “
Multiple Tuned Mass Dampers for Vibration Control of Offshore Platform Against Natural Loadings
,”
The World Congress on Advance in Structural Engineering and Mechanics
,
Ilsan(Seoul), Korea
,
Aug. 28–Sept. 1, 2017
, pp.
1
18
.
11.
Wu
,
Q.
,
Zhao
,
X.
,
Zheng
,
R.
, and
Minagawa
,
K.
,
2016
, “
High Response Performance of a Tuned Mass Damper for Vibration Suppression of Offshore Platform Under Earthquake Loads
,”
J. Shock Vib.
,
2016
, pp.
1
11
.
12.
Ha
,
M.
, and
Cheong
,
C.
,
2016
, “
Pitch Motion Mitigation of Spar-Type Floating Substructure for Offshore Wind Turbine Using Multilayer Tuned Liquid Damper
,”
Ocean Eng.
,
116
, pp.
157
164
. 10.1016/j.oceaneng.2016.02.036
13.
Lotfollahi-Yaghin
,
M. A.
,
Ahmadi
,
H.
, and
Tafakhor
,
H.
,
2016
, “
Seismic Responses of an Offshore Jacket-Type Platform Incorporated With Tuned Liquid Dampers
,”
Adv. Struct. Eng.
,
19
(
2
), pp.
227
238
. 10.1177/1369433215624340
14.
Moharrami
,
M.
, and
Tootkaboni
,
M.
,
2014
, “
Reducing Response of Offshore Platforms to Wave Loads Using Hydrodynamic Buoyant Mass Dampers
,”
Struct. Eng.
,
81
, pp.
162
174
. 10.1016/j.engstruct.2014.09.037
15.
Tabeshpour
,
M. R.
, and
Rokni
,
H. J.
,
2018
, “
Spectral Fatigue Analysis of Jacket Platform Under Wave Load Equipped With Viscous Damper
,”
J. Mar. Sci. Technol.
10.1007/s00773-018-0592-9
16.
He
,
X. Y.
,
Li
,
H. N.
, and
Zhang
,
J.
,
2016
, “
Multi-Dimensional Seismic Response Control of Offshore Platform Structures With Viscoelastic Dampers
,”
J. Struct. Monit. Maint.
,
3
(
2
), pp.
157
174
. 10.12989/smm.2016.3.2.157
17.
Li
,
H. J.
,
Hu
,
S. L. J.
, and
Jakubiak
,
C.
,
2003
, “
H2 Active Vibration Control for Offshore Platform Subjected to Wave Forces
,”
J. Sound Vib.
,
263
(
4
), pp.
709
724
. 10.1016/S0022-460X(02)01095-7
18.
Luo
,
M.
, and
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Optimal Control of Offshore Platforms Under Wave Forces
,”
J. Sound Vib.
,
296
(
4–5
), pp.
734
745
. 10.1016/j.jsv.2006.01.071
19.
Ma
,
H.
,
Tang
,
G. Y.
, and
Zhao
,
Y. D.
,
2006
, “
Feedforward and Feedback Optimal Control for Offshore Structures Subjected to Irregular Wave Forces
,”
J. Ocean Eng.
,
33
(
8–9
), pp.
1105
1117
. 10.1016/j.oceaneng.2005.07.009
20.
Kim
,
D. H.
,
2009
, “
Neuro-control of Fixed Offshore Structures Under Earthquake
,”
J. Eng. Struct.
,
31
(
2
), pp.
517
522
. 10.1016/j.engstruct.2008.10.002
21.
Zhang
,
X. M.
,
Han
,
Q. L.
, and
Han
,
D. S.
,
2011
, “
Effects of Small Time-Delays on Dynamic Output Feedback Control of Offshore Steel Jacket Structures
,”
J. Sound Vib.
,
330
(
16
), pp.
3883
3900
. 10.1016/j.jsv.2011.03.023
22.
Zhang
,
B. L.
,
Han
,
Q. L.
, and
Huang
,
Z. W.
,
2014
, “
Pure Delayed Non-Fragile Control for Offshore Steel Jacket Platforms Subject to Non-Linear Self-Excited Wave Force
,”
J. Nonlinear Dyn.
,
77
(
3
), pp.
491
502
. 10.1007/s11071-014-1312-6
23.
Zhang
,
B. L.
,
Ma
,
L.
, and
Han
,
Q. L.
,
2012
, “
Sliding Mode Control for Offshore Steel Jacket Platforms Subject to Nonlinear Self-Excited Wave Force and External Disturbance
,”
J. Nonlinear Anal.: Real World Appl.
,
4
(
1
), pp.
163
178
. 10.1016/j.nonrwa.2012.05.010
24.
Zhang
,
B. L.
,
Han
,
Q. L.
,
Zhang
,
X. M.
, and
Yu
,
X.
,
2014
, “
Sliding Mode Control With Mixed Current and Delayed States for Offshore Steel Jacket Platforms
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1769
1783
. 10.1109/TCST.2013.2293401
25.
Zhang
,
B. L.
,
Jiang
,
X.
,
Wu
,
Q.
, and
Tang
,
G. Y.
,
2019
, “
Vibration Reduction for Offshore Platforms via Delayed Sliding Mode H Control
,”
Int. J. Control Autom. Syst.
,
17
(
1
), pp.
107
116
. 10.1007/s12555-018-0110-1
26.
Zhang
,
B. L.
,
Meng
,
M. M.
,
Han
,
Q. L.
, and
Zhang
,
X. M.
,
2015
, “
Robust Non-Fragile Sampled-Data Control for Offshore Steel Jacket Platforms
,”
J. Nonlinear Dyn.
,
83
(
4
), pp.
1939
1954
. 10.1007/s11071-015-2457-7
27.
Huang
,
S.
,
Cai
,
M.
, and
Xiang
,
Z.
,
2017
, “
Robust Sampled-Data H Control for Offshore Platforms Subject to Irregular Wave Forces and Actuator Saturation
,”
J. Nonlinear Dyn.
,
88
(
4
), pp.
2705
2721
. 10.1007/s11071-017-3404-6
28.
Paul
,
S.
,
Datta
,
T. K.
, and
Kapuria
,
S.
,
2009
, “
Control of Fixed Offshore Jacket Platform Using Semi-Active Hydraulic Damper
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
4
), pp.
041
106
. 10.1115/1.3160534
29.
Paul
,
S.
, and
Datta
,
T. K.
,
2012
, “
Semiactive Control of a Fixed Offshore Jacket Platform Using LQR Algorithm
,”
J. Eng. Marit. Environ.
,
227
(
4
), pp.
367
380
.
30.
Babaei
,
S.
,
Amirabadi
,
R.
, and
Taghikhany
,
T.
,
2016
, “
Assessment of Semi-Active Tunes Mass Damper Application in Suppressing Seismic-Induced Vibration of an Existing Jacket Platform
,”
Int. J. Marit. Technol.
,
6
, pp.
1
10
. 10.18869/acadpub.ijmt.6.1
31.
Sarrafan
,
A.
,
Zareh
,
S. H.
,
Khayyat
,
A. A.
, and
Zabihollah
,
A.
,
2011
, “
Performance of an Offshore Platform with MR Dampers Subjected to Wave
,”
Proceedings of the 2011 IEEE International Conference on Mechatronics
,
Istanbul, Turkey
,
Apr. 13–15
, pp.
242
247
. http://dx.doi.org/10.1109/icmech.2011.5971289.
32.
Leng
,
D.
,
Xiao
,
H.
,
Sun
,
L.
,
Liu
,
G.
,
Wang
,
X.
, and
Sun
,
L.
,
2018
, “
Study on a Magnetorheological Elastomer-Base Device for Offshore Platform Vibration Control
,”
J. Intell. Mater. Syst. Struct.
,
30
(
2
), pp.
243
255
. 10.1177/1045389X18808398
33.
Sarrafan
,
A.
,
Zareh
,
S. H.
,
Khayyat
,
A. A.
, and
Zabihollah
,
A.
,
2012
, “
Neuro-Fuzzy Control Strategy for an Offshore Steel Jacket Platform Subjected to Wave-Induced Forces Using Magnetorheological Dampers
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1179
1196
. 10.1007/s12206-012-0212-2
34.
Cai
,
Z. H.
,
Zhang
,
B. L.
, and
Yu
,
X. H.
,
2017
, “
Neural-Network-Based Tracking Control of Offshore Steel Jacket Platforms
,”
LSMS/ICSEE 2017, Part III, CCIS
,
763
, pp.
287
295
.
35.
Zhang
,
B. L.
,
Han
,
Q. L.
,
Zhang
,
X. M.
, and
Yu
,
X.
,
2012
, “
Integral Sliding Mode Control for Offshore Steel Jacket Platforms
,”
J. Sound Vib.
,
331
(
14
), pp.
3271
3285
. 10.1016/j.jsv.2012.03.006
36.
Sarbjeet
,
S.
, and
Dutta
,
T. K.
,
2000
, “
Nonlinear Sliding Mode Control of Seismic Response of Building Frames
,”
J. Eng. Mech.
,
126
(
4
), pp.
340
347
. 10.1061/(ASCE)0733-9399(2000)126:4(340)
37.
Yang
,
J. N.
,
Wu
,
J. C.
,
Agrawal
,
A. K.
, and
Li
,
Z.
,
1994
, “
Sliding Mode Control for Seismic-excited Linear and Nonlinear Civil Engineering Structures
,” Nat. Ctr. for Earthquake Engineering, Res., State Univ. of New York, Buffalo. Technical Report, NCEER-94–00/7.
38.
Nourisola
,
H.
, and
Ahmadi
,
B.
,
2014
, “
Robust Adaptive Sliding Mode Control Based on Wavelet Kernel Principal Component for Offshore Steel Jacket Platforms Subject to Nonlinear Wave-Induced Force
,”
J. Vib. Control
,
22
(
15
), pp.
3299
3311
. 10.1177/1077546314553319
39.
Suhardjo
,
J.
, and
Kareem
,
A.
,
2001
, “
Feedback–Feedforward Control of Offshore Platforms Under Random Waves
,”
J. Earthquake Eng. Struct. Dyn.
,
30
(
2
), pp.
213
235
. 10.1002/1096-9845(200102)30:2<213::AID-EQE5>3.0.CO;2-4
40.
Jafarabad
,
A.
,
Kashani
,
M.
,
Parvar
,
M. R. A.
, and
Golafshan
,
A. A.
,
2014
, “
Hybrid Damping Systems in Offshore Jacket Platforms With Float-Over Deck
,”
J. Constr. Steel Res.
,
98
, pp.
178
187
. 10.1016/j.jcsr.2014.02.004
41.
Xu
,
Z. D.
,
Xu
,
F. H.
, and
Chen
,
X.
,
2016
, “
Intelligent Vibration Isolation and Mitigation of a Platform by Using MR and VE Devices
,”
J. Aerosp. Eng., ASCE
,
29
(
4
), pp.
1
10
. 10.1061/(asce)as.1943-5525.0000604
42.
Lei
,
Y.
,
Wu
,
D. T.
, and
Lin
,
Y.
,
2012
, “
A Decentralized Control Algorithm for Large-Scale Building Structures
,”
Computer-Aided Civil Infrastruct. Eng.
,
27
(
1
), pp.
1
13
. 10.1111/j.1467-8667.2011.00744.x
43.
Wang
,
Y.
,
Lynch
,
J. P.
, and
Law
,
K. H.
,
2009
, “
Decentralized H Controller Design for Large Scale Civil Structures
,”
Earthquake Eng. Struct. Vib.
,
38
(
3
), pp.
377
401
. 10.1002/eqe.862
44.
Som
,
A.
, and
Das
,
D.
,
2018
, “
Seismic Vibration Control of Offshore Jacket Platforms Using Decentralized Sliding Mode Algorithm
,”
J. Ocean Eng.
,
152
, pp.
377
390
. 10.1016/j.oceaneng.2018.01.013
45.
Yan
,
X.
, and
Nie
,
J.
,
2000
, “
Response of SMA Superelastic Systems Under Random Excitation
,”
J. Sound Vib.
,
238
(
5
), pp.
893
901
. 10.1006/jsvi.2000.3020
46.
Choi
,
E.
,
Nam
,
T. H.
,
Oh
,
J. T.
, and
Cho
,
B. S.
,
2006
, “
An Isolation Bearing for Highway Bridges Using Shape Memory Alloys
,”
J. Mater. Sci. Eng.
,
25
, pp.
1081
1084
. 10.1016/j.msea.2006.05.098
47.
Mishra
,
S. K.
,
Gur
,
S.
,
Roy
,
K.
, and
Chakraborty
,
S.
,
2016
, “
Response of Bridges Isolated by Shape Memory–Alloy Rubber Bearing
,”
J. Bridge Eng.
,
21
(
3
), pp.
1
15
. 10.1061/(ASCE)BE.1943-5592.0000837
48.
Bhuiyan
,
A. R.
, and
Alam
,
M. S.
,
2013
, “
Seismic Performance Assessment of Highway Bridges Equipped with Superelastic Shape Memory Alloy-Based Laminated Rubber Isolation Bearing
,”
Eng. Struct.
,
49
, pp.
396
407
. 10.1016/j.engstruct.2012.11.022
49.
Zhang
,
J.
,
Ma
,
Z.
,
Liu
,
F.
,
Liu
,
F.
,
Zhang
,
C.
,
Sharafi
,
P.
, and
Rashidi
,
M.
,
2016
, “
Seismic Performance and Ice-Induced Vibration Control of Offshore Platform Structures Based on the ISO-PFD-SMA Brace System
,”
Adv. Mater. Sci. Eng.
,
2017
, pp.
1
15
.
50.
Chopra
,
A. K.
,
1995
,
Dynamic of Structures, Theory and Applications to Earthquake Engineering
,
Prentice Hall
,
Englewood Cliffs, NJ.
51.
Aliyu
,
B.
,
2014
, “
Concept of Hydrodynamic Load Analysis of Fixed Jacket Structure—An Overview of Horizontal Cylinder
,”
Int. J. Eng. Res.
,
3
(
4
), pp.
196
200
. 10.17950/ijer/v3s4/402
52.
Setiyawan
,
S.
,
Salim
,
H.
,
Lukman
,
R.T.
,
Hadi
,
S.
, and
Hadihardaja
,
I. K.
,
2013
, “
Spectral Representation in Pacitan and Meulaboh Coast
,”
Int. J. Civil Environ. Eng. IJCEE-IJENS
,
3
(
1
), pp.
29
34
.
53.
Hasselmann
,
K.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint South Java Coast Wave Project (JONSWAP)
,” Technical Paper No. UDC 551.466.31, ANE German Bight.
54.
Ok
,
S. Y.
,
Kim
,
D. S.
,
Park
,
K. S.
, and
Koh
,
H. M.
,
2007
, “
Semi-Active Fuzzy Control of Cable-Stayed Bridges Using Magnetorheological Dampers
,”
J. Eng. Struct.
,
29
(
5
), pp.
776
788
. 10.1016/j.engstruct.2006.06.020
55.
Dyke
,
S. J.
,
Spencer
,
B. F.
,
Sain
,
J.
,
and Carlson
,
M. K.
, and
D
,
J.
,
1996
, “
Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction
,”
J. Smart Mater. Struct.
,
5
(
5
), pp.
565
575
. 10.1088/0964-1726/5/5/006
56.
Graesser
,
J.
, and
Cozzarelli
,
F. A.
,
1991
, “
Shape Memory Alloys as New Materials for Aseismic Isolation
,”
J. Eng. Mech., ASCE
,
117
(
11
), pp.
2590
2608
. 10.1061/(ASCE)0733-9399(1991)117:11(2590)
57.
Caicedo
,
J. M.
,
Dyke
,
S. J.
,
Moon
,
S. J.
,
Bergman
,
L. A.
,
Turan
,
G.
, and
Hague
,
S.
,
2003
, “
Phase II Benchmark Control Problem for Seismic Response of Cable-Stayed Bridges
,”
J. Struct. Control
,
10
(
3–4
), pp.
137
168
. 10.1002/stc.23
58.
Wu
,
J. C.
, and
Yang
,
J. N.
,
2004
, “
Modified Sliding Mode Control for Wind-Excited Benchmark Problem
,”
J. Eng. Mech., ASCE
,
130
(
4
), pp.
499
500
. 10.1061/(ASCE)0733-9399(2004)130:4(499)
59.
Ha
,
Q. P.
,
Kwok
,
N. M.
,
Nguyen
,
M. T.
,
Li
,
J.
, and
Samali
,
B.
,
2007
, “
Mitigation of Seismic Responses on Building Structures Using MR Dampers With Lyapunov-Based Control
,”
J. Struct. Control Health Monit.
,
15
(
4
), pp.
604
621
.
60.
Burke
,
B. G.
, and
Tighe
,
J. T.
,
1971
, “
A Time Series Model for Dynamic Behavior of Offshore Structures
,”
Soc. Pet. Eng. J.
,
12
(
02
), pp.
156
170
. 10.2118/3402-PA
61.
Yamada
,
Y.
,
Lemura
,
H.
,
Kawano
,
K.
, and
Venkataramana
,
K.
,
1989
, “
Seismic Response of Offshore Structures in Random Seas
,”
Earthquake Eng. Struct. Dyn.
,
18
(
7
), pp.
965
981
. 10.1002/eqe.4290180704
You do not currently have access to this content.