This paper explores the performance of a 10 MW offshore wind turbine (OWT) supported either on a large diameter monopile or a 4-legged jacket emphasizing on the nonlinear response of its belowseabed foundation. The seabed foundation alternatives, a monopile and a multipod foundation, are compared under monotonic, cyclic, and seismic loading. For all nonseismic scenarios considered, the monopile is more flexible than the jacket and transmits higher rotations at the OWT base. The differences between the two alternatives are amplified in the case of nonsymmetric cyclic loading; the monopile not only deforms more than the jacket but tends to accumulate irrecoverable rotation with increasing loading cycles. The seismic performance of the alternative support structures is assessed for a comprehensive set of earthquake motions. It is concluded that both systems are seismically robust especially when subjected to pure earthquake loading, neglecting the simultaneous action of wind and waves. Alarming issues for OWT performance may arise when a nonzero steady wind force is superimposed to the kinematically induced stressing of the seabed foundation due to the seismic wave action. Jacket legs settle unevenly, while monopiles are building up rotations at increasing rates. Assuming a design-level earthquake and a wind thrust of the order 60% of the NC wind loading amplitude, this seismically induced residual rotation for the monopile may often exceed the deformation tolerance criterion. For the same loading combination, the corresponding rotation of the Jacket installation remains safely within the prescribed limits.

References

References
1.
Schweizer
,
J.
,
Antonini
,
A.
,
Govonia
,
L.
,
Gottardi
,
G.
,
Archetti
,
R.
,
Supino
,
E.
,
Berretta
,
C.
,
Casadei
,
C.
, and
Ozzi
,
C.
,
2016
, “
Investigating the Potential and Feasibility of an Offshore Wind Farm in the Northern Adriatic Sea
,”
Appl. Energy
,
177
(
1
), pp.
449
463
.
2.
Ashuri
,
T.
, and
Zaayer
,
M. B.
, “
Review of Design Concepts, Methods and Considerations of Offshore Wind Turbines
,”
European Offshore Wind Conference and Exhibition
,
Berlin, Germany
,
Dec. 4–6, 2007
.
3.
Krolis
,
V. D.
,
Van der Tempel
,
J.
, and
de Vries
,
W.
, “
Evaluation of Foundation Design for Monopile Support Structures for Offshore Wind Turbine
,”
European Offshore Wind Conference and Exhibition
,
Berlin, Germany
,
Dec. 4–6, 2007
.
4.
Seidel
,
M.
, “
Jacket Substructures for the REpower 5M Wind Turbine
,”
European Offshore Wind Conference and Exhibition
,
Berlin, Germany
,
Dec. 4–6, 2007
.
5.
Wagner
,
H.
,
Baack
,
C.
,
Eickelkamp
,
T.
,
Epe
,
A.
,
Lohmann
,
J.
, and
Troy
,
S.
,
2011
, “
Life Cycle Assessment of the Offshore Wind Farm Alpha Ventus
,”
Energy
,
36
(
5
), pp.
2459
2464
.
6.
Schaumann
,
P.
, and
Böker
,
C.
, “
Can Tripods and Jackets Compete With Monopiles?
Contribution to Copenhagen Offshore Wind
,
Copenhagen, Denmark
,
Oct. 26–28, 2005
.
7.
Chen
,
I.-W.
,
Wong
,
B.-L.
,
Lin
,
Y.-H.
,
Chau
,
S.-W.
, and
Huang
,
H.-H.
,
2016
, “
Design and Analysis of Jacket Substructures for Offshore Wind Turbines
,”
Energies
,
9
(
4
), pp.
264
287
.
8.
Hongwang
,
M.
,
Jun
,
Y.
, and
Longzhu
,
C.
,
2017
, “
Numerical Analysis of the Long-Term Performance of Offshore Wind Turbines Supported by Monopiles
,”
Ocean Eng.,
136
(
May
), pp.
94
105
.
9.
Shi
,
W.
,
Park
,
H.
,
Chung
,
C.
, and
Kim
,
Y.
, “
Comparison of Dynamic Response of Monopile, Tripod and Jacket Foundation System for a 5-MW Wind Turbine
,”
21st International Offshore and Polar Engineering Conference
,
Maui, Hawaii
,
June 19–24, 2011
.
10.
Katsanos
,
E.
,
Thons
,
S.
, and
Georgakis
,
C.
,
2016
, “
Wind Turbines and Seismic Hazard: A State-of-the-Art Review
,”
Wind Energy
,
19
(
11
), pp.
2113
2133
.
11.
Sapountzakis
,
E. J.
,
Dikaros
,
I. C.
,
Kampitsis
,
A. E.
, and
Koroneou
,
A. D.
,
2015
, “
Nonlinear Response of Wind Turbines Under Wind and Seismic Excitations With Soil–Structure Interaction
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
4
), p.
041007
.
12.
Kim
,
D. H.
,
Lee
,
S. G.
, and
Lee
,
I. K.
,
2014
, “
Seismic Fragility Analysis of 5MW Offshore Wind Turbine
,”
Renew. Energy
,
65
, pp.
250
256
.
13.
Abhinav
,
K. A.
, and
Saha
,
N.
, “
Dynamic Analysis of an Offshore Wind Turbine Including Soil Effects
,”
8th International Conference on Asian and Pacific Coasts (APAC 2015)
,
Indian Institute of Technology Madras, Chennai, India
,
Sept. 7–10, 2015
.
14.
Asareh
,
M. A.
,
Schonberg
,
W.
, and
Volz
,
J.
,
2016
, “
Fragility Analysis of a 5MW Wind Turbine Considering Aero-Elastic and Seismic Interaction Using Finite Element Method
,”
Finite Elem. Anal. Des.,
120
(
C
), pp.
57
67
.
15.
Arany
,
L.
,
Bhattacharya
,
S.
, and
Adhikari
,
S.
,
2015
, “
An Analytical Model to Predict the Natural Frequency of Offshore Wind Turbines on Three-Spring Flexible Foundations Using Two Different Beam Models
,”
Soil Dyn. Earthq. Eng.,
74
(
July
), pp.
40
45
.
16.
Mo
,
R.
,
Kang
,
H.
,
Miao
,
L.
, and
Xuanlie
,
Z.
,
2017
, “
Seismic Fragility Analysis of Monopile Offshore Wind Turbines Under Different Operational Conditions
,”
Energies
,
10
(
7
), p.
1037
.
17.
Boulanger
,
R. W.
,
Curras
,
C. J.
,
Kutter
,
B. L.
,
Wilson
,
D. W.
, and
Abghari
,
A.
,
1999
, “
Seismic Soil-Pile-Structure Interaction Experiments and Analyses
,”
J. Geotech. Geoenviron.,
125
(
9
), pp.
750
759
.
18.
Kourkoulis
,
R.
,
Lekkakis
,
P.
,
Gelagoti
,
F.
, and
Kaynia
,
A.
,
2014
, “
Suction Caisson Foundations for Offshore Wind Turbines Subjected to Wave and Earthquake Loading: Effect of Soil–Foundation Interface
,”
Géotechnique
,
64
(
3
), pp.
171
185
.
19.
Lin
,
C.-Y.
,
Lin
,
J.-H.
,
Chu
,
T.-L.
, and
Huang
,
C.-C.
,
2016
, “
Structural Analysis for Jacket Type Support Structure of Offshore Wind Turbine Under Local
,”
Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 26–July 1
.
20.
Shi
,
W.
,
Park
,
H.-C.
,
Chung
,
C.-W.
,
Shin
,
H.-K.
,
Kim
,
S.-H.
,
Lee
,
S.-S.
, and
Kim
,
C.-W.
,
2015
, “
Soil-Structure Interaction on the Response of Jacket-Type Offshore Wind Turbine
,”
Int. J. Precision Eng. Manuf.-Green Technol.
,
2
(
2
), pp.
139
148
.
21.
Alati
,
N.
,
Failla
,
G.
, and
Arena
,
F.
,
2015
, “
Seismic Analysis of Offshore Wind Turbines on Bottom-Fixed Support Structures
,”
Phil. Trans. R. Soc. A
,
373
(
2035
), p.
20140086
.
22.
Yu
,
H.
,
Zeng
,
X.
,
Li
,
B.
, and
Lian
,
J.
,
2015
, “
Centrifuge Modeling of Offshore Wind Foundations Under Earthquake Loading
,”
Soil Dyn. Earthq. Eng.,
77
(
2015
), pp.
402
415
.
23.
Zheng
,
X.
,
Li
,
H.
,
Rong
,
W.
, and
Li
,
W.
,
2015
, “
Joint Earthquake and Wave Action on the Monopile Wind Turbine Foundation: An Experimental Study
,”
Mar. Struct.
,
44
(
2015
), pp.
125
141
.
24.
Wang
,
W.
,
Gao
,
Z.
,
Li
,
X.
, and
Moan
,
T.
,
2016
, “
Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine Under Seismic, Wind, Wave and Current Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
3
), p.
031901
.
25.
Wang
,
W.
,
Wang
,
B.
,
Zhang
,
J.
, and
Li
,
X.
,
2018
, “
Fully Coupled Analysis of a Bottom Fixed Offshore Wind Turbine Under Earthquake
,”
Wind and Wave Loads, 28th International Ocean and Polar Engineering Conference
,
Sapporo, Japan
,
June 10–15
.
26.
Skempton
,
A. W.
,
1954
, “
The structure of inorganic soil. Discussion
,”
Proc. Soil Mech. and Found. Eng., ASCE, 8, separate No. 478
,
pp. 19-22
.
27.
American Petroleum Institute (API)
,
2000
, “
Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design
,”
API Recommended Practice 2A-WSD (RP2A-WSD)
,
21st ed
,
Washington, DC
.
28.
Det Norske Veritas
,
2014
, “
Offshore Standard DNV-OS-J101
,”
Design of Offshore Wind Turbine Structures
,
Det Norske Veritas, Høvik
.
29.
Mavrakos
,
S.
,
2016
, “
Med-Ocean Data and Hydrodynamic Loading for the North Sea and the Mediterranean Sea location
,” JABACO Development of Modular Steel Jacket for Offshore Windfarms, Deliverable 1.1.
30.
Morison
,
J. R.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Petrol. Technol.
,
2
(
5
), pp.
149
154
.
31.
ABAQUS 6.13
.,
2013
,
Standard User’s Manual
,
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
32.
Doherty
,
P.
, and
Gavin
,
K.
,
2011
, “
The Shaft Capacity of Displacement Piles in Clay: A State of the Art Review
,”
Geotech. Geol. Eng.
,
29
(
4
), pp.
389
410
.
33.
Wroth
,
C. P.
,
1971
, “
Some Aspects of the Elastic Behavior of Overconsolidated Clay
,”
Stress Strain Behaviour of Soils
,
R.H.G.
Parry
, ed.,
Foulis
,
Cambridge University, Department of Engineering
, pp.
347
361
.
34.
Eide
,
O.
,
Hutchinson
,
J. N.
, and
Landva
,
A.
,
1961
, “
Short and Long Term Test Loading of a Friction Pile in Clay
,”
Proc.5th Int. Conf Soil Mech., Fdn Engng
,
Paris
, pp.
45
54
.
35.
Randolph
,
M. F.
, and
Wroth
,
C. P.
,
1979
, “
An Analytical Solution for the Consolidation Around a Driven Pile
,”
Numer. Anal. Methods Geomech.
,
3
(
3
), pp.
217
229
.
36.
API Recommended Practice 2A-WSD
,
2000
,
Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design
,
22nd ed.
,
American Petroleum Institute
,
Washington, DC
.
37.
Randolph
,
M. F.
, and
Gourvenec
,
S.
,
2011
,
Offshore Geotechnical Engineering
,
Spon Press
,
London
.
38.
Gerolymos
,
N.
, and
Gazetas
,
G.
,
2005
, “
Nonlinear Lateral Response of Caisson Foundations
,”
1st Greece-Japan Workshop on Seismic Design, Observation, Retrofit of Foundations
,
Athens, Greece
.
39.
Raptakis
,
D.
,
Chávez-Garcıa
,
F. J.
,
Makra
,
K.
, and
Pitilakis
,
K.
,
2000
, “
Site Effects at Euroseistest—I. Determination of the Valley Structure and Confrontation of Observations With 1D Analysis
,”
Soil Dyn. Earthq. Eng.,
19
(
1
), pp.
1
22
.
40.
Anastasopoulos
,
I.
,
Gelagoti
,
F.
,
Kourkoulis
,
R.
, and
Gazetas
,
G.
,
2011
, “
Simplified Constitutive Model for Simulation of Cyclic Response of Shallow Foundations: Validation Against Laboratory Tests
,”
J. Geotech. Geoenviron. Eng. (ASCE)
,
137
(
12
), pp.
1154
1168
.
41.
Giannakos
,
S.
,
Gerolymos
,
N.
, and
Gazetas
,
G.
,
2012
, “
Cyclic Lateral Response of Piles in Dry Sand: Finite Element Modeling and Validation
,”
Comput. Geotech.,
44
(
212
), pp.
116
131
.
42.
Gerolymos
,
N.
,
Zafeirakos
,
A.
, and
Karapiperis
,
K.
,
2015
, “
Generalized Failure Envelope for Caisson Foundations in Cohesive Soil: Static and Dynamic Loading
,”
Soil Dyn. Earthq. Eng.,
78
(
November
), pp.
154
174
.
43.
Anastasopoulos
,
I.
, and
Theofilou
,
M.
,
2016
, “
Hybrid Foundation for Offshore Wind Turbines: Environmental and Seismic Loading
,”
Soil Dyn. Earthq. Eng.,
80
(
January
), pp.
192
209
.
44.
IEC (International Electrotechnical Commission)
,
2005
,
IEC 61400-1: Wind Turbines—Part 1: Design Requirements
,
IEC
,
Geneva, Switzerland
.
45.
Det Norske Veritas
,
2016
,
Offshore Standard DNVGL-ST-0126, Support Structures for Wind Turbines
,
Det Norske Veritas
,
Høvik
.
46.
Witcher
,
D.
,
2005
, “
Seismic Analysis of Wind Turbines in the Time Domain
,”
Wind Energy
,
8
(
1
), pp.
81
91
.
47.
Haenler
,
M.
,
Ritschel
,
U.
, and
Warnke
,
I.
,
2006
, “
Systematic Modelling of Wind Turbine Dynamics and Earthquake Loads on Wind Turbines
,”
European Wind Energy Conference and Exhibition
,
Athens, Greece
,
Feb. 27–Mar. 2
.
48.
Zhao
,
X.
, and
Maisser
,
P.
,
2006
, “
Seismic Response Analysis of Wind Turbine Towers Including Soil-Structure Interaction
,”
Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
,
220
(
1
), pp.
53
61
.
49.
Giardini
,
D.
,
Woessner
,
J.
,
Danciu
,
L.
, and
Directorate-General for Research and Innovation (European Commission)
,
2014
, “
Seismic Hazard Harmonization in Europe (SHARE)
,”
Mapping Europe’s Seismic Hazard. EOS
,
95
(
29
), pp.
261
262
.
50.
EN 1998-1
,
2004
,
EN 1998-1: Eurocode 8: Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic actions and Rules for Buildings
,
European Committee for Standardisation
.
You do not currently have access to this content.