In this paper, detailed experimental results are reported to study the effect of the surface wave of different frequencies on unidirectional current over the bed-mounted train of rib roughness. The model roughness used in this study is transverse square ribs that lengthened across the entire width of the recirculating wave channel. The center-to-center rib pitch (P) was constant during the experiments, thus generating a broad range of near-bed flow patterns for each of the three different surface wave frequencies studied here. The relative submergence associated with the roughness height (k) was 8, which fall in the category of large roughness. Velocity measurements were conducted using acoustic Doppler velocimeter (ADV), and a surface wave of different frequencies was generated using the plunger-type wavemaker. The measured velocity data were analyzed to determine the relative importance of mean flow over the train of rib roughness. Mean velocity profiles illustrate the well-known downward shift from the flat surface data of the semi-logarithmic portion of the law of the wall. The width of the turbulent boundary layer increases with the superposition of surface wave compared to that of the current-only flow. The results also show that the mean reattachment length decreases due to the superposition of surface wave on unidirectional current.

References

References
1.
Miyake
,
Y.
,
Tsujimoto
,
K.
, and
Agata
,
Y.
,
2001
, “
Direct Numerical Simulation of Rough Wall Heat Transfer in a Turbulent Channel Flow
,”
Int. J. Heat Fluid Flow
,
22
, pp.
237
244
.
2.
Krogstad
,
P. A.
,
Andersson
,
H. I.
,
Bakken
,
O. M.
, and
Ashrafian
,
A.
,
2005
, “
An Experimental and Numerical Study of Channel Flow with Rough Walls
,”
J. Fluid Mech.
,
530
, pp.
327
352
.
3.
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
,
2007
, “
Properties of d- and k-Type Roughness in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
, pp.
125101
125106
.
4.
Stoesser
,
T.
, and
Nikora
,
V.
,
2008
, “
Flow Structure Over Square Bars at Intermediate Submergence: Large-Eddy Simulation Study of Bar Spacing Effect
,”
Acta Geophys.
,
56
, pp.
876
893
.
5.
Shamloo
,
H.
, and
Pirzadeh
,
B.
,
2015
, “
Analysis of Roughness Density and Flow Submergence Effects on Turbulence Flow Characteristics in Open Channels Using a Large Eddy Simulation
,”
Appl. Math. Model.
,
39
, pp.
1074
1086
.
6.
Agelinchaab
,
M.
, and
Tachie
,
M. F.
,
2006
, “
Open Channel Turbulent Flow Over Hemispherical Ribs
,”
Int. J. Heat Fluid Flow
,
27
, pp.
1010
1027
.
7.
Roussinova
,
V.
, and
Balachandar
,
R.
,
2011
, “
Open Channel Flow Past a Train of Rib Roughness
,”
J. Turbul.
,
12
, pp.
1
17
.
8.
Singh
,
S. K.
,
Raushan
,
P. K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2018
, “
Turbulent Oscillatory Flow Along Unidirectional Current Over Square Ribs
,”
Can. J. Civ. Eng.
,
45
, pp.
248
262
.
9.
Mathisen
,
P. P.
, and
Madsen
,
O. S.
,
1996
, “
Wave and Currents Over a Fixed Rippled Bed: 1. Bottom Roughness Experienced by Waves in the Presence and Absence of Current
,”
J. Geophys. Res.
,
101
, pp.
16533
16542
.
10.
Mathisen
,
P. P.
, and
Madsen
,
O. S.
,
1996
, “
Wave and Currents Over a Fixed Rippled Bed: 2. Bottom and Apparent Roughness Experienced by Currents in the Presence of Waves
,”
J. Geophys. Res.
,
101
, pp.
16543
16550
.
11.
Fredsoe
,
J.
,
Andersen
,
K. H.
, and
Sumer
,
B. M.
,
1999
, “
Wave Plus Current Over a Ripple Covered Bed
,”
Coastal Eng.
,
38
, pp.
177
221
.
12.
Mehdizadeh
,
A.
,
Firoozabadi
,
B.
, and
Farhanieh
,
B.
,
2008
, “
Numerical Simulation of Turbidity Current Using
v2¯
–f Turbulence Model
,”
J. Appl Fluid Mech.
,
1
, pp.
45
55
. http://jafmonline.net/JournalArchive/download?file_ID=15222&issue_ID=198
13.
Ojha
,
S. P.
, and
Mazumder
,
B. S.
,
2010
, “
Turbulence Characteristics of Flow Over a Series of 2-D Bed Forms in the Presence of Surface Waves
,”
J. Geophys. Res.
,
115
, pp.
1
15
.
14.
Banerjee
,
T.
,
Muste
,
M.
, and
Katual
,
G.
,
2015
, “
Flume Experiments on Wind Induced Flow in Static Water Bodies in the Presence of Protruding Vegetation
,”
Adv. Water Resour.
,
76
, pp.
11
28
.
15.
Singh
,
S. K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2016
, “
Spatially-Averaged Turbulent Flow Over Cubical Roughness in Wave-Current Co-Existing Environment
,”
Coastal Eng.
,
114
, pp.
77
85
.
16.
Singh
,
S. K.
,
Raushan
,
P. K.
, and
Debnath
,
K.
,
2018
, “
Turbulent Characteristics of Pulsating Flow Over Hydraulically Smooth Surface
,”
Eur. J. Mech. B Fluids
,
68C
, pp.
10
19
.
17.
Singh
,
S. K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2016
, “
Changes in Turbulent Flow Structure Over Rough-Bed Under Combined Wave-Current Motion
,”
ISH J. Hydraul. Eng.
,
22
(
3
), pp.
305
313
.
18.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P. N.
,
1969
, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
37
, pp.
383
413
.
19.
Nezu
,
I.
, and
Rodi
,
W.
,
1986
, “
Open-Channel Measurements With a Laser Doppler Anemometer
,”
J. Hydraul. Eng.
,
112
(
5
), pp.
335
355
.
20.
Singh
,
S.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2015
, “
Turbulence Statistics of Wave-Current Flow Over a Submerged Cube
,”
J Waterway, Port, Coastal, Ocean Eng.
,
142
, pp.
1
20
.
21.
Singh
,
S. K.
, and
Debnath
,
K.
,
2017
, “
Turbulent Characteristics of Flow Under Combined Wave-Current Motion
,”
ASME J. Offshore Mech. Arctic Eng.
,
139
(
2
), p.
021102
.
22.
Nezu
,
I.
, and
Nakagawa
,
H.
,
1993
,
Turbulence in Open-Channel Flows
,
A. A.
Balkema
, ed.,
CRC Press
,
Rotterdam, The Netherlands
, Chap. 3.
23.
Dean
,
R.
,
1978
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
215
223
.
24.
Nezu
,
I.
, and
Rodi
,
W.
,
1985
, “
Experimental Study on Secondary Currents in Open Channel Flow
,”
Proceedings of 21st IAHR Congress
,
Melbourne, Australia
, 2, pp.
19
23
.
25.
Ranga Raju
,
K. G.
,
Asawa
,
G. L.
, and
Mishra
,
H. K.
,
2000
, “
Flow Establishment Length in Rectangular Channels and Duct
,”
J. Hydraul. Eng.
,
126
(
7
), pp.
533
539
.
26.
Sharma
,
A.
, and
Kumar
,
B.
,
2017
, “
Boundary Layer Development Over Non-Uniform Sand Rough Bed Channel
,”
ISH J. Hydraul. Eng.
,
25
, pp.
162
169
.
27.
Wei
,
T.
,
Schmidt
,
R.
, and
McMurtry
,
P.
,
2005
, “
Comment on the Clauser Chart Method for Determining the Friction Velocity
,”
Exp. Fluids
,
38
, pp.
695
699
.
28.
Cui
,
J.
,
Patel
,
V. C.
, and
Lin
,
C. L.
,
2003
, “
Large-Eddy Simulation of Turbulent Flow in a Channel With Rib Roughness
,”
Int. J. Heat Fluid Flow
,
24
, pp.
372
388
.
29.
Tachie
,
M. F.
,
Agelinchaab
,
M.
, and
Shah
,
M. K.
,
2007
, “
Turbulent Flow Over Transverse Ribs in Open Channel With Converging Side Walls
,”
Int. J. Heat Fluid Flow
,
28
, pp.
683
707
.
30.
Singh
,
S. K.
,
Debnath
,
K.
, and
Mazumder
,
B. S.
,
2017
, “
Turbulence Over Cube Mounted Rough Bed Using Spatiotemporal Averaging Approach
,”
Can. J. Civ. Eng.
,
44
, pp.
504
517
.
31.
Singh
,
S. K.
,
Raushan
,
P. K.
, and
Debnath
,
K.
,
2018
, “
Combined Effect of Wave and Current in Rough Bed Free Surface Flow
,”
Ocean Eng.
,
160
, pp.
20
32
.
32.
Raushan
,
P. K.
,
Singh
,
S. K.
, and
Debnath
,
K.
,
2018
, “
Grid Generated Turbulence Under the Rigid Boundary Influence
,”
J. Wind Eng. Ind. Aerod.
,
182
, pp.
252
261
.
This content is only available via PDF.
You do not currently have access to this content.