Wave loads from breaking waves on offshore wind turbine (OWT) substructures in shallow waters still remain uncertain. The interaction of breaking waves with structures is characterized by complex free surface deformations, instantaneous impact of the water mass against the structure, and consequently large wave forces on the structures. The main objective of the paper is to investigate wave impact pressures and kinematics during the interaction of breaking waves with a vertical cylinder using the open-source computational fluid dynamics (CFD) model REEF3D. The model is based on the Reynolds-averaged Navier–Stokes (RANS) equations coupled with the level set method and k–ω turbulence model. Three wave impact conditions are considered in this study. The numerically simulated free surface deformations around the cylinder during the breaking wave interaction are also presented for different wave impact conditions. For three wave impact conditions, the wave impact pressure and the horizontal and vertical components of the particle velocity are computed in front of the cylinder and analyzed. The pressure and velocity profile at their maximum values are also examined and discussed. In addition, the total force is calculated for three breaking conditions and they are correlated with the pressure and kinematics during the interaction.

References

References
1.
Alagan Chella
,
M.
,
Tørum
,
A.
, and
Myrhaug
,
D.
,
2012
, “
An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures
,”
Energy Procedia
,
20
, pp.
217
226
.
2.
Apelt
,
C. J.
, and
Piorewicz
,
J.
,
1987
, “
Laboratory Studies of Breaking Wave Forces Acting on Vertical Cylinders in Shallow Water
,”
Coastal Eng.
,
11
(
3
), pp.
263
282
.
3.
Babanin
,
A. V.
,
2011
,
Breaking and Dissipation of Ocean Surface Waves
,
Cambridge University Press
, Cambridge, UK.
4.
Sawaragi
,
T.
, and
Nochino
,
M.
,
1984
, “
Impact Forces of Nearly Breaking Waves on a Vertical Circular Cylinder
,”
Coastal Eng. J.
,
27
(
1
), pp.
249
263
.
5.
Wienke
,
J.
, and
Oumeraci
,
H.
,
2005
, “
Breaking Wave Impact Force on a Vertical and Inclined Slender Pile-Theoretical and Large-Scale Model Investigations
,”
Coastal Eng.
,
52
(
5
), pp.
435
416
.
6.
Goda
,
Y.
,
Haranaka
,
S.
, and
Kitahata
,
M.
,
1966
, “
Study of Impulsive Breaking Wave Forces on Piles
,” Port and Harbor Research Institute, Ministry of Transport, Japan, Report No.
005-06
https://www.pari.go.jp/en/report_search/detail.php?id=1966040050601
7.
Arntsen
,
Ø. A.
,
Ros
,
X.
, and
Tørum
,
A.
,
2011
, “
Impact Forces on a Vertical Pile From Plunging Breaking Waves
,”
24th Conference on Coastal Structures
,
Yokohama, Japan
,
Sept. 5–9
, pp.
533
544
.
8.
Hildebrandt
,
A.
, and
Schlurmann
,
T.
,
2012
, “
Breaking Wave Kinematics, Local Pressures, and Forces on a Tripod Structure
,”
33rd Conference on Coastal Engineering
,
Shanghai, China
,
June 30–July 5
, pp.
1
14
.
9.
Bredmose
,
H.
, and
Jacobsen
,
N. G.
,
2010
, “
Breaking Wave Impacts on Offshore Wind Turbine Foundations: Focused Wave Groups and CFD
,”
ASME
Paper No. OMAE2010-20368.
10.
Mo
,
W.
,
Jensen
,
A.
, and
Liu
,
P. L.-F.
,
2013
, “
Plunging Solitary Wave and Its Interaction With a Slender Cylinder on a Sloping Beach
,”
Ocean Eng.
,
74
, pp.
48
60
.
11.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking-Wave Interaction With Tandem Cylinders Under Different Impact Scenarios
,”
J. Waterw. Port Coastal Ocean Eng.
,
142
(
5
), p.
04016005
.
12.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Muskulus
,
M.
,
2017
, “
Breaking Solitary Waves and Breaking Wave Forces on a Vertically Mounted Slender Cylinder Over an Impermeable Sloping Seabed
,”
J. Ocean Eng. Mar. Energy
,
3
(
1
), pp.
1
19
.
13.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean Eng.
,
128
, pp.
105
115
.
14.
Ghadirian
,
A.
,
Bredmose
,
H.
, and
Dixen
,
M.
,
2016
, “
Breaking Phase Focused Wave Group Loads on Offshore Wind Turbine Monopiles
,”
J. Phys.: Conf. Ser.
,
753
(
9
), p.
092004
.
15.
Christensen
,
E. D.
,
Bredmose
,
H.
, and
Hansen
,
E. A.
,
2005
, “
Extreme Wave Forces and Wave Run-Up on Offshore Windturbine Foundations
,”
Copenhagen Offshore Wind
, Copenhagen, Denmark, Oct. 26–28, pp.
1
10
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.2573&rep=rep1&type=pdf
16.
Xiao
,
H.
, and
Huang
,
W.
,
2014
, “
Three-Dimensional Numerical Modeling of Solitary Wave Breaking and Force on a Cylinder Pile in a Coastal Surf Zone
,”
ASCE J. Eng. Mech.
,
141
(
8
), p. A4014001.
17.
Choi
,
S.
,
Lee
,
K.
, and
Gudmestad
,
O.
,
2015
, “
The Effect of Dynamic Amplification Due to a Structures Vibration on Breaking Wave Impact
,”
Ocean Eng.
,
96
, pp.
8
20
.
18.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
19.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Muskulus
,
M.
,
2015
, “
Breaking Characteristics and Geometric Properties of Spilling Breakers Over Slopes
,”
Coastal Eng.
,
95
, pp.
4
19
.
20.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Muskulus
,
M.
,
2016
, “
Hydrodynamic Characteristics and Geometric Properties of Plunging and Spilling Breakers Over Impermeable Slopes
,”
Ocean Modell.
,
103
, pp.
53
72
.
21.
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Myrhaug
,
D.
,
2015
, “
Characteristics and Profile Asymmetry Properties of Waves Breaking Over an Impermeable Submerged Reef
,”
Coastal Eng.
,
100
, pp.
26
36
.
22.
Irschik
,
K.
,
Sparboom
,
U.
, and
Oumeraci
,
H.
,
2002
, “
Breaking Wave Characteristics for the Loading of a Slender Pile
,”
28th Conference on Coastal Engineering
,
Cardiff, UK
,
July 7–12
, pp.
1341
1352
.
23.
Chakrabarti
,
S. K.
,
Kriebel
,
D.
, and
Berek
,
E.
,
1997
, “
Forces on a Single Pile Caisson in Breaking Waves and Current
,”
Appl. Ocean Res.
,
19
(
2
), pp.
113
140
.
24.
Wienke
,
J.
,
Sparboom
,
U.
, and
Oumeraci
,
H.
,
2000
, “
Breaking Wave Impact on a Slender Cylinder
,”
27th Conference on Coastal Engineering
,
Sydney, Australia
,
July 16–21
, pp.
1787
1798
.
25.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
26.
Shu
,
C. W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
27.
Griebel
,
M.
,
Dornseifer
,
T.
, and
Neunhoeffer
,
T.
,
1998
,
Numerical Simulation in Fluid Dynamics, A Practical Introduction
,
SIAM
, Philadelphia, PA.
28.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
29.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
30.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
31.
Larsen
,
J.
, and
Dancy
,
H.
,
1983
, “
Open Boundaries in Short Wave Simulations—A New Approach
,”
Coastal Eng.
,
7
(
3
), pp.
285
297
.
32.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
33.
Schäffer
,
H. A.
, and
Klopman
,
G.
,
2000
, “
Review of Multidirectional Active Wave Absorption Methods
,”
J. Waterw. Port Coastal Ocean Eng.
,
126
(
2
), pp.
88
97
.
34.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
35.
Fenton
,
J. D.
,
1999
,
The Cnoidal Theory of Water Waves
,
J. B.
Herbich
ed.,
Developments in Offshore Engineering
,
Gulf, Houston, TX
, pp.
55
100
.
You do not currently have access to this content.