Offshore wind energy is experiencing rapid development and is expected to make up an even bigger part of the world's future energy mix. New installation concepts for offshore wind farms involve lifting operations of wind turbine components from floating vessels. These installation concepts will only be economic if the lifting operations are performed safely at sea states with high significant wave heights. In this paper, we give an overview of current technical solutions, which could be used to lift the components tower, nacelle, hub, and rotor blade from a floating vessel. We classify and analyze solutions found in patents and the academic literature and point out open problems, which need to be addressed to enable lifting operations at higher sea states than what is currently feasible. However, we restrict the paper to technical solutions concerning the interface between the vessel and the component as well as the interface between the component and the crane. Consequently, we analyze, classify, and discuss solutions for the seafastening, the lifting gear as well as motion compensation systems. We find that there exists a large number of solutions, which are specific for a single component, but few solutions, which are applicable to all components without major adaptations. Additionally, we miss hydraulic seafastening mechanisms, which are remotely controlled and synchronized with the lifting operation. Consequently, we argue that versatile interfaces between the component and the crane as well as remotely controlled and synchronized seafastening mechanisms are best suited to enhance the lifting process.

References

1.
Esteban
,
M. D.
,
Diez
,
J. J.
,
López
,
J. S.
, and
Negro
,
V.
,
2011
, “
Why Offshore Wind Energy?
,”
Renewable Energy
,
36
(
2
), pp.
444
450
.
2.
GWEC
,
2017
, “
Global Wind 2016 Report: Annual Market Update
,” Global Wind Energy Council, Brussels, Belgium,
Report
.https://gwec.net/publications/global-wind-report-2/global-wind-report-2016/
3.
IEC
,
2009
, “
Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines
,” International Electrotechnical Commission, Geneva, Switzerland, Report No. IEC 61400-3:2009-02.
4.
Sarkar
,
A.
, and
Gudmestad
,
O. T.
,
2013
, “
Study on a New Method for Installing a Monopile and a Fully Integrated Offshore Wind Turbine Structure
,”
Mar. Struct.
,
33
, pp.
160
187
.
5.
Ahn
,
D.
,
Shin
,
S. C.
,
Kim
,
S. Y.
,
Kharoufi
,
H.
, and
Kim
,
H. C.
,
2017
, “
Comparative Evaluation of Different Offshore Wind Turbine Installation Vessels for Korean Westsouth Wind Farm
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
1
), pp.
45
54
.
6.
Seidel
,
M.
, and
Gosch
,
D.
,
2006
, “
Technical Challenges and Their Solution for the Beatrice Windfarm Demonstrator Project in 45M Water Depth
,”
Eighth German Wind Energy Conference
(
DEWEK
2006), Bremen, Germany, accessed Nov. 22–23.https://www.researchgate.net/publication/229038698_Technical_challenges_and_their_solution_for_the_Beatrice_Windfarm_demonstrator_project_in_45M_water_depth
7.
Wåsjø
,
K.
,
Bermúdez-Rico
,
J. V.
,
Bjerkås
,
M.
, and
Søreide
,
T.
,
2013
, “
A Novel Concept for Self Installing Offshore Wind Turbines
,”
ASME
Paper No. OMAE2013-11439.
8.
Ku
,
N.
, and
Roh
,
M.-I.
,
2015
, “
Dynamic Response Simulation of an Offshore Wind Turbine Suspended by a Floating Crane
,”
Ships Offshore Struct.
,
10
(
6
), pp.
621
634
.
9.
Acero
,
W. I. G.
,
2016
, “
Assessment of Marine Operations for Offshore Wind Turbine Installation With Emphasis on Response-Based Operational Limits
,”
Ph.D. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.https://brage.bibsys.no/xmlui/handle/11250/2432746
10.
Sarker
,
B. R.
, and
Faiz
,
T. I.
,
2017
, “
Minimizing Transportation and Installation Costs for Turbines in Offshore Wind Farms
,”
Renewable Energy
,
101
, pp.
667
679
.
11.
Muhabie
,
Y. T.
,
Caprace
,
J.-D.
,
Petcu
,
C.
, and
Rigo
,
P.
,
2015
, “
Improving the Installation of Offshore Wind Farms by the Use of Discrete Event Simulation
,”
World Maritime Technology Conference (WMTC)
,
Providence, RI
,
Nov. 3–7
, pp.
1
10
.
12.
Vis
,
I. F.
, and
Ursavas
,
E.
,
2016
, “
Assessment Approaches to Logistics for Offshore Wind Energy Installation
,”
Sustainable Energy Technol. Assess.
,
14
, pp.
80
91
.
13.
The European Wind Energy Association
,
2009
, “
Oceans of Opportunity: Harnessing Europe's Largest Domestic Energy Resource
,” European Wind Energy Association, accessed Jan. 2, 2019, http://psew.pl/en/wp-content/uploads/sites/2/2017/01/6c1fd7949c499c04e829cfbdbbdb79e1.pdf
14.
Oelker
,
S.
,
Lewandowski
,
M.
,
Ait Alla
,
A.
,
Ohlendorf
,
J.-H.
, and
Haselsteiner
,
A. F.
,
2017
, “
Logistikszenarien für die Errichtung von Offshore-Windparks: Herausforderungen der Wirtschaftlichkeitsbetrachtung neuer Logistikkonzepte
,”
Industrie 4.0 Management
, Vol.
33
, pp.
24
28
.
15.
Ait Alla
,
A.
,
Oelker
,
S.
,
Lewandowski
,
M.
,
Freitag
,
M.
, and
Thoben
,
K.-D.
,
2017
, “
A Study of New installation concepts of Offshore Wind Farms by Means of Simulation Model
,”
27th International Ocean and Polar Engineering Conference
(
ISOPE
2017), San Francisco, CA, June 25–30, pp.
607
612
.https://www.onepetro.org/conference-paper/ISOPE-I-17-431
16.
Meyer
,
M.
,
2014
, “
Reeder von Offshore-Spezialtonnage müssen spekulativer vorgehen
,”
Hansa Int. Maritime J.
,
151
(
10
), pp.
54
55
.
17.
Oelker
,
S.
,
Ait-Alla
,
A.
,
Lütjen
,
M.
,
Lewandowski
,
M.
,
Freitag
,
M.
, and
Thoben
,
K.-D.
,
2018
, “
A Simulation Study of Feeder-Based Installation Concepts for Offshore Wind Farms
,”
28th International Ocean and Polar Engineering Conference
(
ISOPE
2018), Sapporo, Japan, June 10–15, pp.
578
583
.https://www.onepetro.org/conference-paper/ISOPE-I-18-332
18.
Gille
,
D.
,
2018
, “
Offshore-Kosten sparen: Windparkfütterung
,” Schlütersche Verwaltungsgesellschaft mbH, Hannover, Germany.
19.
Van Oord
,
2016
, “
Svanen Installs Foundations for the Burbo Bank Extension Offshore Wind Farm
,” Van Oord, Rotterdam, The Netherlands, accessed Mar. 6, 2018, https://www.vanoord.com/activities/sustainable-energy-united-kingdom
20.
E.ON SE
,
2017
, “
Construction Begins for the Arkona Offshore Wind Project in the Baltic Sea
,” E.ON SE, Essen, Germany, Jan. 2, 2019, https://www.eon.com/en/about-us/media/press-release/2017/construction-begins-for-the-arkona-offshore-wind-project-in-the-baltic-sea.html
21.
OffshoreWIND.biz
,
2015
, “
Blue Water Backs Baltic 2 Jacket Foundation Work
,” Navingo BV, Schiedam, The Netherlands, accessed Jan. 2, 2019, https://www.offshorewind.biz/2015/03/17/blue-water-backs-baltic-2-jacket-foundation-work
22.
Kaiser
,
M. J.
, and
Snyder
,
B. F.
,
2013
, “
Modeling Offshore Wind Installation Costs on the U.S. Outer Continental Shelf
,”
Renewable Energy
,
50
, pp.
676
691
.
23.
Ait Alla
,
A.
,
Quandt
,
M.
, and
Lütjen
,
M.
,
2013
, “
Simulation-Based Aggregate Installation Planning of Offshore Wind Farms
,”
Int. J. Energy
,
7
(
2
), pp.
23
30
.
24.
Jeong
,
D.-H.
,
Roh
,
M.-I.
, and
Ham
,
S.-H.
,
2016
, “
Lifting Simulation of an Offshore Supply Vessel Considering Various Operating Conditions
,”
Adv. Mech. Eng.
,
8
(
6
), pp.
1
13
.
25.
Acero
,
W. G.
,
Gao
,
Z.
, and
Moan
,
T.
,
2017
, “
Numerical Study of a Novel Procedure for Installing the Tower and Rotor Nacelle Assembly of Offshore Wind Turbines Based on the Inverted Pendulum Principle
,”
J. Mar. Sci. Appl.
,
16
(
3
), pp.
243
260
.
26.
Jiang
,
Z.
,
Gao
,
Z.
,
Ren
,
Z.
,
Li
,
Y.
, and
Duan
,
L.
,
2018
, “
A Parametric Study on the Final Blade Installation Process for Monopile Wind Turbines Under Rough Environmental Conditions
,”
Eng. Struct.
,
172
, pp.
1042
1056
.
27.
Haselsteiner
,
A. F.
,
Ohlendorf
,
J.-H.
,
Oelker
,
S.
,
Ströer
,
L.
,
Thoben
,
K.-D.
,
Wiedemann
,
K.
,
De Ridder
,
E.
, and
Lehmann
,
S.
,
2018
, “
Lifting Wind Turbine Components From a Floating Vessel: A Review on Current Solutions and Open Problems
,”
ASME
Paper No. OMAE2018-78659.
28.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
29.
DNV GL
,
2015
, “
Sea Transport Operations (VMA Standard—Part 2-2)
,” DNV GL, Standard No.
DNV-OS-H202
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2015-10/OS-H202.pdf
30.
ShipBuilding Industry
,
2012
, “
Jaguar: Simply Unconventional
,”
ShipBuilding Ind.
,
6
(
4
), pp.
46
51
.
31.
Ochi
,
M. K.
,
1973
, “
On Prediction of Extreme Values
,”
J. Ship Res.
,
17
(
1
), pp.
29
37
.https://trid.trb.org/view/13308
32.
Det Norske Veritas
,
2011
, “
Recommended Practice: Modelling and Analysis of Marine Operations
,” Det Norske Veritas, accessed Jan. 2, 2019, https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2011-04/RP-H103.pdf
33.
Behr
,
C. P.
,
2012
, “
Sicherungselement und Transportrahmen für Elemente einer Windkraftanlage
,” European Patent No. 2444656A2.
34.
Hoeksema
,
W.
,
2014
, “
Innovative Solution for Seafastening Offshore Wind Turbine Transition Pieces During Transport
,”
M.Sc. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A308b7b2f-f6d7-44c5-ae03-ad2519afada3
35.
Jepsen
,
A. W.
,
Moeller
,
J.
, and
Svinth
,
K. H.
,
2016
, “
Method and Arrangement to Transport a Tower of a Wind Turbine on a Vessel
,” European Patent No. 3088735A1.
36.
Steck
,
C.
, and
Singer
,
F.
,
2016
, “
System and Method for Transporting and Lifting a Rotor Blade of a Wind Turbine
,” European Patent No. 3101271A1.
37.
Wessel
,
T.
, and
Scott
,
P.
,
2009
, “
System and Method for Transporting Wind Turbine Tower Sections on a Shipping Vessel
,” European Patent No. 2133558A2.
38.
Behr
,
C. P.
,
2012
, “
Befestigungssystem für den Transport einer schweren Last auf einer Transportoberfläche
,” European Patent No. 2540567A2.
39.
Behr
,
C. P.
,
2012
, “
Vorrichtung zum Sichern von schweren Lasten
,” European Patent No. 2423046A2.
40.
Krogh
,
M. V.
, and
Poulsen
,
H.
,
2012
, “
Lifting System and Method for Lifting Rotor Blades of Wind Turbines
,” European Patent No. 2487363A1.
41.
Lieberknecht
,
K.
,
Mastrup
,
A.
,
Svinth
,
K. H.
, and
Wieland
,
M. R.
,
2014
,“
Wind Turbine Blade Holding Arrangement
,” European Patent No. 2796709A1.
42.
Krogh
,
M. V.
,
2011
, “
Lifting Fitting
,” WIPO Patent No. WO2011009500A1.
43.
Franke
,
B.
,
2011
, “
Connection Bracket
,” U.S. Patent No. 2011252721A1.
44.
Alba
,
T. J.
,
2014
, “
Tower Erection Lift Kit Tools
,” U.S. Patent No. 2014042763A1.
45.
Behr
,
C. P.
,
2011
, “
Hubvorrichtung für Turmsegmente
,” WIPO Patent No. WO2011154110A1.
46.
Moeller
,
J.
, and
Svinth
,
K. H.
,
2015
, “
Raising a Tower Segment
,” European Patent No. 2824057A1.
47.
Belder
,
C.
, and
Mulderij
,
K.-J.
,
2012
, “
Clamping Device
,” WIPO Patent No. WO2012093940A1.
48.
Belder
,
C.
, and
Zuijdgeest
,
Q. W. P. M.
,
2016
, “
Flange Lifting Tool
,” WIPO Patent No. WO2016184905A1.
49.
Spence
,
R.
,
2013
, “
Tower Section Lifting Apparatus
,” WIPO Patent No. WO2013027047A1.
50.
Mulderij
,
K.-J.
,
2014
, “
Pile Upending Device
,” WIPO Patent No. WO2014084738A1.
51.
Mulderij
,
K.-J.
,
2017
, “
Lifting Device for Picking Up a Member From the Bottom of the Sea
,” WIPO Patent No. WO2017013197A1.
52.
Falkenberg
,
P. L.
,
2013
, ” “
Installation/Dismounting of a Hub to/From a Nacelle of a Wind Turbine by Using a Blade Pitch Angle Adjustment Device of the Hub for Orientating the Hub
,” European Patent No. 2653716A1.
53.
Krogh
,
M. V.
, and
Pulsen
,
H.
,
2012
, “
Lifting System and Method for Lifting Rotor Blades of Wind Turbines
,” U.S. Patent No. 2012192420A1.
54.
Bergem
,
O.
,
Sannes
,
S.
, and
Helland
,
K.
,
2016
, “
Subsea Heave Compensator
,” European Patent No. 2982636A1.
55.
Southerland
,
A.
,
1970
, “
Mechanical Systems for Ocean Engineering
,”
Nav. Eng. J.
,
82
(
5
), pp.
63
74
.
56.
Hatleskog
,
J.
, and
Dunnigan
,
M.
,
2007
, “
Active Heave Crown Compensation Sub-System
,”
OCEANS 2007—Europe
, Aberdeen, UK, June 18–21, pp.
1
6
.
57.
Koppert
,
P. M.
,
2012
, “
Motion Compensation Device for Compensating a Carrier Frame on a Vessel for Water Motion
,” U.S. Patent No. US2012024214A1.
58.
Jaouen
,
F.
,
van der Schaaf
,
H.
,
van der Berge
,
J.
,
May
,
E.
, and
Koppenol
,
J.
,
2012
, “
How Does Barge-Master Compensate for the Barge Motions: Experimmental and Numerical Study
,”
ASME
Paper No. OMAE2012-83045.
59.
Wang
,
S.
,
Sun
,
Y.
,
Chen
,
H.
, and
Han
,
G.
,
2017
, “
Kinematics and Force Analysis of a Novel Offshore Crane Combined Compensation System
,”
J. Eng. Maritime Environ.
,
231
(
2
), pp.
633
648
.
60.
Wang
,
S.
,
Sun
,
Y.
,
Chen
,
H.
, and
Du
,
J.
,
2018
, “
Dynamic Modelling and Analysis of 3-Axis Motion Compensated Offshore Cranes
,”
Ships Offshore Struct.
,
13
(
3
), pp.
265
272
.
61.
Woodacre
,
J. K.
,
Bauer
,
R. J.
, and
Irani
,
R. A.
,
2015
, “
A Review of Vertical Motion Heave Compensation Systems
,”
Ocean Eng.
,
104
, pp.
140
154
.
62.
Harris
,
C. M.
, and
Crede
,
C. E.
,
1976
,
Shock and Vibration Handbook
, 2nd ed.,
McGraw-Hill
,
New York
.
63.
DNV GL
,
2016
, “
Standard for Offshore and Platform Lifting Appliances
,” DNV GL, Standard No.
DNVGL-ST-0378
.https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-05/DNVGL-ST-0378.pdf
64.
Det Norske Veritas
,
2014
, “
Lifting Operations (VMO Standard—Part 2-5)
,” Det Norske Veritas, Standard No.
DNV-OS-H205
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2014-04/OS-H205.pdf
You do not currently have access to this content.