A coupled numerical model has been developed and validated to study the fluid–structural interaction responses of a three-bladed tidal turbine in aligned waves and current. The unsteady blade element momentum (BEM) theory was combined with modal analysis for hydro-elastic calculation. Both the loading and deflection of the blade were studied. The dynamic loading on the blade due to structural deformation was much smaller than the wave-induced loading under linear wave conditions for the given condition. The linear response amplitude operators (RAOs) of the loads and the blade tip deflections were obtained and used to predict the linear responses. Although both sum- and difference-frequency responses can be identified from time domain simulations, the wave-induced load and the deflection of the blade are dominated by the first-order contributions. The maximum deflection of the blade tip could reach 1.3 m (203% of the means) in the flapwise direction and 0.35 m (210% of the mean) in the edgewise direction with a wave peak period of 11.3 s and a significant wave height of 5.5 m.

References

References
1.
Dolan
,
D. S.
, and
Lehn
,
P. W.
,
2006
, “
Simulation Model of Wind Turbine 3P Torque Oscillations Due to Wind Shear and Tower Shadow
,”
IEEE Trans. Energy Convers.
,
21
(
3
), pp.
717
724
.
2.
Churchfield
,
M. J.
,
Lee
,
S.
,
Michalakes
,
J.
, and
Moriarty
,
P. J.
,
2012
, “
A Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics
,”
J. Turbul.
,
13
(
14
), pp.
1
32
.
3.
Henderson
,
A. R.
, and
Patel
,
M. H.
,
2003
, “
On the Modelling of a Floating Offshore Wind Turbine
,”
Wind Energy
,
6
(
1
), pp.
53
86
.
4.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.
5.
Jonkman
,
J.
, and
Jonkman
,
B.
,
2018
, “
NWTC Information Portal (FAST v8)
,” National Wind Technology Center, NREL, Golden, CO, accessed Oct. 31, 2018, https://nwtc.nrel.gov/fast8
6.
Vorpahl
,
F.
,
Strobel
,
M.
,
Jonkman
,
J. M.
,
Larsen
,
T. J.
,
Passon
,
P.
, and
Nichols
,
J.
,
2014
, “
Verification of Aero-Elastic Offshore Wind Turbine Design Codes Under IEA Wind Task XXIII
,”
Wind Energy
,
17
(
4
), pp.
519
547
.
7.
Barltrop
,
N.
,
Varyani
,
K.
,
Grant
,
A.
,
Clelland
,
D.
, and
Pham
,
X.
,
2007
, “
Investigation Into Wave—Current Interactions in Marine Current Turbines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
2
), pp.
233
242
.
8.
Luznik
,
L.
,
Flack
,
K. A.
,
Lust
,
E. E.
, and
Taylor
,
K.
,
2013
, “
The Effect of Surface Waves on the Performance Characteristics of a Model Tidal Turbine
,”
Renewable Energy
,
58
, pp.
108
114
.
9.
Galloway
,
P. W.
,
Myers
,
L. E.
, and
Bahaj
,
A. S.
,
2014
, “
Quantifying Wave and Yaw Effects on a Scale Tidal Stream Turbine
,”
Renewable Energy
,
63
, pp.
297
307
.
10.
Guo
,
X.
,
Yang
,
J.
,
Gao
,
Z.
,
Moan
,
T.
, and
Lu
,
H.
,
2018
, “
The Surface Wave Effects on the Performance and the Loading of a Tidal Turbine
,”
Ocean Eng.
,
156
, pp.
120
134
.
11.
Guo
,
X.
,
Gao
,
Z.
,
Yang
,
J.
, and
Moan
,
T.
,
2017
, “
Hydrodynamic Loads on a Tidal Turbine in Random Seas
,”
12th European Wave and Tidal Energy Conference (EWTEC)
,
Cork, Ireland
,
Aug. 27–Sept. 1
.
12.
Whelan
,
J.
,
2010
, “
A Fluid Dynamic Study of Free-Surface Proximity and Inertia Effects on Tidal Turbines
,” Ph.D. thesis, Imperial College London, London.
13.
Leishman
,
J. G.
,
2002
, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy: An Int. J. Prog. Appl. Wind Power Convers. Technol.
,
5
(
2–3
), pp.
85
132
.
14.
Glauert
,
H.
,
1935
, “
Airplane Propellers
,”
Aerodynamic Theory
, Vol.
4
,
Springer
,
Berlin
, pp.
169
360
.
15.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
,
32
(
3
), pp.
407
426
.
16.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2008
, “
The Prediction of the Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
,
33
(
5
), pp.
1085
1096
.
17.
Epps
,
B. P.
, and
Kimball
,
R. W.
,
2013
, “
Unified Rotor Lifting Line Theory
,”
J. Ship Res.
,
57
(
4
), pp.
181
201
.
18.
Young
,
Y. L.
,
Motley
,
M. R.
, and
Yeung
,
R. W.
,
2010
, “
Three-Dimensional Numerical Modeling of the Transient Fluid-Structural Interaction Response of Tidal Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
1
), p.
011101
.
19.
Tatum
,
S.
,
Frost
,
C.
,
Allmark
,
M.
,
O'Doherty
,
D.
,
Mason-Jones
,
A.
,
Prickett
,
P.
,
Grosvenor
,
R.
,
Byrne
,
C.
, and
O'Doherty
,
T.
,
2016
, “
Wave–Current Interaction Effects on Tidal Stream Turbine Performance and Loading Characteristics
,”
Int. J. Mar. Energy
,
14
, pp.
161
179
.
20.
Grogan
,
D.
,
Leen
,
S.
,
Kennedy
,
C.
, and
Brádaigh
,
C. Ó.
,
2013
, “
Design of Composite Tidal Turbine Blades
,”
Renewable Energy
,
57
, pp.
151
162
.
21.
Hansen
,
M. O.
,
2013
,
Aerodynamics of Wind Turbines
,
Routledge
,
Sterling, VA
, pp.
85
101
.
22.
Buckland
,
H.
,
2014
, “
Combined Current, Wave and Turbulent Flows and Their Effects on Tidal Energy Devices
,”
Ph.D. thesis
, Swansea University, Swansea, UK.https://search.proquest.com/openview/8a73510950b94f6f23d896a3dc531666/1?pq-origsite=gscholar&cbl=2026366&diss=y
23.
Nevalainen
,
T.
,
Johnstone
,
C.
, and
Grant
,
A.
,
2016
, “
A Sensitivity Analysis on Tidal Stream Turbine Loads Caused by Operational, Geometric Design and Inflow Parameters
,”
Int. J. Mar. Energy
,
16
, pp.
51
64
.
24.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific Publishing Company
,
Singapore
, pp.
66
68
.
25.
Molland
,
A. F.
,
Bahaj
,
A. S.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2004
, “
Measurements and Predictions of Forces, Pressures and Cavitation on 2-D Sections Suitable for Marine Current Turbines
,”
Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
218
(
2
), pp.
127
138
.
26.
Hansen
,
M.
,
Gaunaa
,
M.
, and
Madsen
,
H.
,
2004
, “
A Beddoes–Leishman Type Dynamic Stall Model in State-Space and Indicial Formulations
,” Technical Report, Risø National Laboratory, Roskilde, Denmark, Report No.
R-1354
(EN).http://orbit.dtu.dk/en/publications/a-beddoesleishman-type-dynamic-stall-model-in-statespace-and-indicial-formulations(37a92ed4-3b28-4d27-a21e-d953b11862c8).html
27.
Bir
,
G.
,
2005
, “
User's Guide to Precomp
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38929
.https://mapcruzin.com/wind-power-publications/research-development/38929.pdf
28.
Bir
,
G. S.
,
Lawson
,
M. J.
, and
Li
,
Y.
,
2011
, “
Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade
,”
ASME
Paper No. OMAE2011-50063
.
29.
Guo
,
X.
,
Gao
,
Z.
,
Yang
,
J.
,
Moan
,
T.
,
Lu
,
H.
,
Li
,
X.
, and
Lu
,
W.
,
2017
, “
The Effects of Surface Waves and Submergence on the Performance and Loading of a Tidal Turbine
,”
ASME
Paper No. OMAE2017-62233
.
30.
DNV
,
2010
, “
Environmental Conditions and Environmental Loads
,” Recommended Practice, DNV GL, Oslo, Norway, Technical Report No.
DNV-RP-C205
.https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2010-10/rp-c205.pdf
31.
Bir
,
G.
,
2005
, “
User's Guide to BModes
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-39133
.https://www.nrel.gov/docs/fy06osti/39133.pdf
32.
Milne
,
I.
,
Day
,
A.
,
Sharma
,
R.
, and
Flay
,
R.
,
2015
, “
Blade Loading on Tidal Turbines for Uniform Unsteady Flow
,”
Renewable Energy
,
77
, pp.
338
350
.
33.
Brodtkorb
,
P.
,
Johannesson
,
P.
,
Lindgren
,
G.
,
Rychlik
,
I.
,
Rydén
,
J.
, and
Sjö
,
E.
,
2000
, “
WAFO—A Matlab Toolbox for the Analysis of Random Waves and Loads
,”
Tenth International Offshore and Polar Engineering Conference
,
Seattle, WA
,
May 28–June 2
, pp.
343
350
.
You do not currently have access to this content.