This paper describes the use of a lifting line model in order to determine the optimum loading on a marine turbine's blades. The influence of the wake and its geometry is represented though the use of a full wake alignment model. The effects of viscous drag are included through a drag-to-lift ratio. Results for different number of blades and tip speed ratios are presented. Various types of constraints are imposed in the optimization method in order to avoid abrupt changes in the designed blade shape. The effect of the constraints on the power coefficients of the turbines is studied. Once the optimum loading has been determined, the blade geometry is generated for a given chord and camber distributions. Finally, a vortex-lattice method is used to verify the power coefficient of the designed turbines.

References

References
1.
Betz, A.
, 2013, “
The Maximum of the Theoretically Possible Exploitation of Wind by Means of a Wind Motor
,”
Wind Eng.
,
37
(4), pp. 441–446.
2.
Falcão de Campos
,
J. A. C.
,
2007
, “
Hydrodynamic Power Optimization of a Horizontal Axis Marine Current Turbine With a Lifting Line Theory
,”
17th International Offshore and Polar Engineering Conference
,
Lisbon, Portugal
,
July 1–6
, Paper No. ISOPE-I-07-372.
3.
Maekawa
,
H. W.
,
1986
, “
Optimum Design Method of Horizontal-Axis Turbine Blades Based on Lifting-Line Theory
,”
Bull. JSME
,
29
(
256
), pp.
3403
3408
.
4.
Epps
,
B. P.
,
Stanway
,
M. J.
, and
Kimball
,
R. W.
,
2009
, “
Openprop: An Open Source Design Tool for Propellers and Turbines
,”
Society of Naval Architects and Marine Engineers Propeller/Shafting 2009 Symposium
, pp.
1
11
.
5.
Epps
,
B. P.
, and
Kimball
,
R. W.
,
2013
, “
Unified Rotor Lifting Line Theory
,”
J. Ship Res.
,
57
(
4
), pp.
1
24
.
6.
Zan
,
K.
,
2008
, “
A Study of Optimum Circulation Distributions for Wind Turbines
,” Department of Civil Engineering, The University of Texas at Austin, Austin, TX, Report No. UT-OE 08-3.
7.
Xu
,
W.
,
2010
, “
Numerical Techniques for the Design and Prediction of Performance of Marine Turbines and Propellers
,”
Master's thesis
, Department of Civil Engineering, The University of Texas at Austin, Austin, TX.https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-08-2020
8.
Xu
,
W.
,
2009
, “
A Study of Producing the Maximum Efficiency for the Wind Turbine and Propeller
,” Department of Civil Engineering, The University of Texas at Austin, Austin, TX, Report No. UT-OE 09-1.
9.
Kinnas
,
S. A.
,
Xu
,
W.
,
Yu
,
Y.-H.
, and
He
,
L.
,
2012
, “
Computational Methods for the Design and Prediction of Performance of Tidal Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
1
), p. 011101.
10.
Menéndez Arán
,
D.
, and
Kinnas
,
S. A.
,
2012
, “
Hydrodynamic Optimization of Marine Current Turbines
,”
17th Offshore Symposium,
Houston, TX
,
Feb. 28–29
, pp.
D15
D22
.
11.
Menéndez Arán
,
D.
, and
Kinnas
,
S. A.
,
2013
, “
Optimization and Prediction of Performance of Marine Current Turbines
,”
18th Offshore Symposium,
pp.
A41
A56
.
12.
Menéndez Arán
,
D.
, and
Kinnas
,
S. A.
,
2014
, “
On Fully Aligned Lifting Line Model for Propellers: An Assessment of Betz Condition
,”
J. Ship Res.
,
58
(
3
), pp.
130
145
.
13.
Kerwin
,
J. E.
,
Coney
,
W. B.
, and
Hsin
,
C.-H.
,
1986
, “
Optimum Circulation Distribution for Single and Multi-Component Propulsors
,”
21st American Towing Tank Conference
, pp.
53
62
.
14.
Lerbs
,
H. W.
,
1952
, “
Moderately Loaded Propellers With a Finite Number of Blades and an Arbitrary Distribution of Circulation
,”
SNAME, Trans.
,
60
, pp.
73
123
.
15.
Wrench
,
J. W.
,
1957
, “
The Calculation of Propeller Induction Factors
,” David Taylor Model Basin, Bethesda, Washington DC, Report. No. 1116.
16.
Betz
,
A.
,
1919
, “
Schrauben Propeller Mit Geringsten Energieverlust
,”
K. Ges. Wiss. Gottingen Nachr. Math.-Phys. Klasse
,
1919
, pp.
193
217
.
17.
Kerwin
,
J. E.
, and
Hadler
,
J. C.
,
2010
,
Propulsion, the Principles of Naval Architecture Series
,
SNAME
, Alexandria, VA.
18.
Kinnas
,
S. A.
, and
Coney
,
W. B.
,
1992
, “
The Generalized Image Model—An Application to the Design of Ducted Propellers
,”
J. Ship Res.
,
36
(
3
), pp.
197
209
.
19.
Menéndez Arán
,
D.
,
2013
, “
Hydrodynamic Optimization and Design of Marine Current Turbines and Propellers
,” Master's thesis, Department of Civil Engineering, The University of Texas at Austin, Austin, TX.
20.
Tian
,
Y.
, and
Kinnas
,
S. A.
,
2012
, “
A Wake Model for the Prediction of Propeller Performance at Low Advance Ratios
,”
Int. J. Rotating Mach.
,
2012
, pp.
519
527
.
21.
He
,
L.
, and
Kinnas
,
S. A.
,
2017
, “
Numerical Simulation of Unsteady Propeller/Rudder Interaction
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
6
), pp. 677–692.
22.
Ramsey
,
W. D.
,
1996
, “
Boundary Integral Methods for Lifting Bodies With Vortex Wakes
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Lindsay
,
K.
, and
Krasny
,
R.
,
2001
, “
A Particle Method and Adaptive Treecode for Vortex Sheet Motion in Three-Dimensional Flow
,”
J. Comput. Phys.
,
172
(
2
), pp.
879
907
.
24.
Glauert
,
H.
,
1947
,
The Elements of Aerofoil and Airscrew Theory
,
Cambridge University Press
,
New York
.
25.
Myers
,
R. H.
,
2000
,
Classical and Modern Regression With Applications
,
Duxbury Classic
, North Scituate, MA.
26.
Gullikson
,
M.
, and
Wedin
,
P. Å.
,
1992
, “
Modifying the QR-Decomposition to Constrained and Weighted Linear Least Squares
,”
SIAM J. Matrix Anal. Appl.
,
13
(
4
), pp.
1298
1313
.
27.
Kerwin
,
J. E.
,
Kinnas
,
S. A.
,
Wilson
,
M. B.
, and
McHugh
,
J.
,
1986
, “
Experimental and Analytical Techniques for the Study of Unsteady Propeller Sheet Cavitation
,”
16th Symposium on Naval Hydrodynamics
, pp.
387
414
.
28.
Epps
,
B. P.
,
2010
, “
An Impulse Framework for Hydrodynamic Force Analysis: Fish Propulsion, Water Entry of Spheres, and Marine Propellers
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
29.
Stewart
,
H. J.
,
1976
, “
Dual Optimum Aerodynamic Design for a Conventional Windmill
,”
AIAA J.
,
14
(
11
), pp.
1524
1527
.
30.
Loukakis
,
T. A.
,
1971
, “
A New Theory for the Wake of Marine Propellers
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
31.
Mishima
,
S.
, and
Kinnas
,
S. A.
,
1997
, “
Application of a Numerical Optimization Technique to the Design of Cavitating Propellers in Nonuniform Flow
,”
J. Ship Res.
,
41
(
2
), pp.
93
107
.https://utexas.influuent.utsystem.edu/en/publications/application-of-a-numerical-optimization-technique-to-the-design-o
32.
Xu
,
W.
, and
Kinnas
,
S. A.
,
2010
, “
Performance Prediction and Design of Marine Current Turbines in the Presence of Cavitation
,”
SNAME, Trans.
,
118
, p. 284–292.
You do not currently have access to this content.