A free-hanging riser (FHR) is a typical riser configuration seen in the disconnected drilling riser, the water-intake riser, and the deep-sea mining riser. In offshore productions, these marine risers will move back and forth in water and further generate an equivalent oscillatory current around themselves, due to the vessel motions. Both in full-scale marine operations and model tests, it has been reported that such oscillatory current leads to riser vortex-induced vibration (VIV) and therefore causes structural fatigue damage. Recently, there have been some attempts to numerically predict vessel motion-induced VIV on the compliant production risers, with emphasize on relatively large Keulegan–Carpenter (KC) numbers. In the real marine operations, the risers experience small KC number scenarios during most of their service life. Therefore, the investigation of vessel motion-induced VIV under small KC number is of great significance, especially considering its contribution to the fatigue damage. In this paper, numerical investigation of VIV of a FHR attached to a floating vessel is carried out. A new response frequency model for vessel motion-induced VIV under small KC numbers is proposed and implemented in vivana. Validation of the proposed numerical methodology is performed against the published experimental results, where a good agreement is achieved.

References

References
1.
Fu
,
S. X.
,
Wang
,
J. G.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2014
, “
Features of Vortex-Induced Vibration in Oscillatory Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
1
), p.
011801
.
2.
Wang
,
J.
,
Fu
,
S.
, and
Baarholm
,
R.
,
2014
, “
Vortex-Induced Vibration of Steel Catenary Riser Under Vessel Motion
,”
ASME
Paper No. OMAE2014-23584
.
3.
Wang
,
J.
,
Fu
,
S.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2014
, “
Fatigue Damage of a Steel Catenary Riser From Vortex-Induced Vibration Caused by Vessel Motions
,”
Mar. Struct.
,
39
, pp.
131
156
.
4.
Wang
,
J.
,
Fu
,
S.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2015
, “
Out-of-Plane Vortex-Induced Vibration of a Steel Catenary Riser Caused by Vessel Motions
,”
Ocean Eng.
,
109
, pp.
389
400
.
5.
Wang
,
J.
,
Fu
,
S.
,
Baarholm
,
R.
,
Wu
,
J.
, and
Larsen
,
C. M.
,
2015
, “
Fatigue Damage Induced by Vortex-Induced Vibrations in Oscillatory Flow
,”
Mar. Struct.
,
40
, pp.
73
91
.
6.
Jung
,
D.
,
Lee
,
H.
,
Kim
,
H.
, and
Moon
,
D.
, 2012, “
Study of Vortex-Induced Vibrations in a Riser Under Low Keulegan-Carpenter Numbers
,”
Twenty-Second International Offshore and Polar Engineering Conference
, International Society of Offshore and Polar Engineers,
Rhodes, Greece
,
June 17–22
, Paper No.
ISOPE-I-12-411
.https://www.onepetro.org/conference-paper/ISOPE-I-12-411
7.
Kwon
,
Y.
,
Kim
,
H.
, and
Jung
,
D.
,
2015
, “
A Study for Forced Oscillation Experiment for OTEC Riser Under Current
,”
Twenty-Fifth International Ocean and Polar Engineering Conference
, International Society of Offshore and Polar Engineers,
Kona, HI
,
June 21–26
, Paper No.
ISOPE-I-15-804
.https://www.onepetro.org/conference-paper/ISOPE-I-15-804
8.
Xiang
,
S.
,
Cao
,
P.
,
He
,
J.
,
Kibbee
,
S.
, and
Bian
,
S.
,
2015
, “
Water Intake Riser Model Test and Numerical Calibration
,”
ASME
Paper No. OMAE2015-42248.
9.
Wang
,
J.
,
Xiang
,
S.
,
Fu
,
S.
,
Cao
,
P.
,
Yang
,
J.
, and
He
,
J.
,
2016
, “
Experimental Investigation on the Dynamic Responses of a Free-Hanging Water Intake Riser Under Vessel Motion
,”
Mar. Struct.
,
50
, pp.
1
19
.
10.
Larsen
,
C. M.
,
Vikestad
,
K.
,
Yttervik
,
R.
,
Passano
,
E.
, and
Baarholm
,
G. S.
,
2001
, “
VIVANA Theory Manual
,” Marintek, Trondheim, Norway.
11.
Grant
,
R. G.
,
Litton
,
R. W.
, and
Mamidipudi
,
P.
, 1999, “
Highly Compliant Rigid (HCR) Riser Model Tests and Analysis
,”
Offshore Technology Conference
,
Houston, TX
,
May 3–6
, Paper No.
OTC-10973-MS
.
12.
Thorsen
,
M. J.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2017
, “
Non-Linear Time Domain Analysis of Cross-Flow Vortex-Induced Vibrations
,”
Mar. Struct.
,
51
, pp.
134
151
.
13.
Gonzalez
,
E. C.
,
2001
, “
High Frequency Dynamic Response of Marine Risers With Application to Flow-Induced Vibration
,” Massachusetts Institute of Technology, Cambridge, MA.
14.
Le Cunff
,
C.
,
Biolley
,
F.
, and
Damy
,
G.
,
2005
, “
Experimental and Numerical Study of Heave-Induced Lateral Motion (HILM)
,”
ASME
Paper No. OMAE2005-67019
.
15.
Pereira
,
F. R.
,
Gonçalves
,
R. T.
,
Pesce
,
C. P.
,
Fujarra
,
A. L.
,
Franzini
,
G. R.
, and
Mendes
,
P.
, 2013, “
A Model Scale Experimental Investigation on Vortex-Self Induced Vibrations (VSIV) of Catenary Risers
,”
ASME
Paper No. OMAE2013-10447.
16.
Constantinides
,
Y.
,
Cao
,
P.
,
Cheng
,
J.
,
Fu
,
S.
, and
Kusinski
,
G.
,
2016
, “
Steel Lazy Wave Riser Tests in Harsh Offshore Environment
,”
ASME
Paper No. OMAE2016-54970
.
17.
Cheng
,
J.
,
Cao
,
P.
,
Fu
,
S.
, and
Constantinides
,
Y.
,
2016
, “
Experimental and Numerical Study of Steel Lazy Wave Riser Response in Extreme Environment
,”
ASME
Paper No. OMAE2016-54871
.
18.
Wang
,
J.
,
Fu
,
S.
,
Ong
,
M. C.
, and
Li
,
H.
,
2016
, “
Experimental Investigation on Vortex-Induced Vibration of a Free-Hanging Riser Under Vessel Motion
,”
ASME
Paper No. OMAE2016-54617
.
19.
Liao
,
J.-C.
,
2001
, “
Vortex-Induced Vibration of Slender Structures in Unsteady Flow
,” Massachusetts Institute of Technology, Cambridge, MA.
20.
Wu
,
J.
,
Lie
,
H.
,
Larsen
,
C. M.
, and
Baarholm
,
R. J.
, 2015, “
An Empirical Heave Induced VIV Prediction Model
,”
ASME
Paper No. OMAE2015-42065
.
21.
Wang
,
J.
,
Jaiman
,
R. K.
,
Adaikalaraj
,
P. F. B.
,
Shen
,
L.
,
Tan
,
S. B.
, and
Wang
,
W.
,
2016
, “
Vortex-Induced Vibration of a Free-Hanging Riser Under Irregular Vessel Motion
,”
AMSE
Paper No. OMAE2016-54701.
22.
Sumer
,
B. M.
,
2006
,
Hydrodynamics Around Cylindrical Strucures
,
World Scientific
, Singapore.
23.
Fernandes
,
A.
,
Mirzaeisefat
,
S.
, and
Cascão
,
L.
,
2014
, “
Fundamental Behavior of Vortex Self Induced Vibration (VSIV)
,”
Appl. Ocean Res.
,
47
, pp.
183
191
.
24.
Vedeld
,
K.
,
Sollund
,
H.
,
Fyrileiv
,
O.
, and
Nestegård
,
A.
, 2016, “
A Response Model for Vortex Induced Vibrations in Low KC Number Flows
,”
ASME
Paper No. OMAE2016-55000
.
25.
Veritas
,
D. N.
,
2006
, “
Free Spanning Pipelines
,” DET NORSKE VERITAS, Høvik, Norway, Report No. DNV-RPF105.
26.
Wang
,
J.
,
Fu
,
S.
,
Wang
,
J.
,
Li
,
H.
, and
Ong
,
M. C.
,
2017
, “
Experimental Investigation on Vortex-Induced Vibration of a Free-Hanging Riser Under Vessel Motion and Uniform Current
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
4
), p.
041703
.
27.
Ormberg
,
H.
, and
Passano
,
E.
,
2012
, “
RIFLEX Theory Manual
,” Marintek, Trondheim.
28.
Venugopal
,
M.
, 1996, “
Damping and Response Prediction of a Flexible Cylinder in a Current
,” Massachusetts Institute of Technology, Cambridge, MA.
29.
Munson
,
D.
,
Adams
,
T. M.
, and
Hall
,
S.
, 2012, “
Determination of Material Damping Values for High Density Polyethylene Pipe Materials
,”
ASME
Paper No. PVP2012-78776.
30.
Chung
,
J. S.
, 2009, “
The Hughes Glomar Explorer and a 5000-m-Long Heavy-Lift Pipe: Coupled Ship and Pipe Motions Measured in North Pacific Ocean
,”
Nineteenth International Offshore and Polar Engineering Conference
, International Society of Offshore and Polar Engineers,
Osaka, Japan
,
July 21–26
, Paper No.
ISOPE-I-09-499
https://www.onepetro.org/conference-paper/ISOPE-I-09-499.
31.
DNV
,
2005
, “
RP-C203: Fatigue Design of Offshore Steel Structures
,” Det Norske Veritas, Høvik, Norway.
You do not currently have access to this content.