The dynamic interaction between pipeline vibration and local scour is investigated numerically. The sediment scour model is adopted to calculate the local scour below pipeline. The general moving objects (GMO) model fully coupled with the fluids is established to simulate the pipeline vibration. The present results are consistent with the previous experimental results and show good agreement. The scour depth and scour hole scale are closely related to the amplitude of pipeline vibration. The effects of initial gap-to-diameter ratio, reduced velocity, and pipeline diameter on the local scour and pipeline vibration are investigated.

References

References
1.
Brors
,
B.
,
1999
, “
Numerical Modeling of Flow and Scour at Pipelines
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
511
523
.
2.
Chen
,
X. Y.
,
Zhang
,
L. L.
,
Chen
,
L. H.
,
Li
,
X.
, and
Liu
,
D. S.
, 2019, “
Slope Stability Analysis Based on the Coupled Eulerian-Lagrangian Finite Element Method
,”
Bull. Eng. Geol. Environ.
(epub).
3.
Sumer
,
B. M.
,
Jensen
,
H. R.
,
Mao
,
Y.
, and
Fredsøe
,
J.
,
1988
, “
Effect of Lee-Wake on Scour Below Pipelines in Current
,”
J. Waterw. Port Coastal Ocean Eng.
,
114
(
5
), pp.
599
614
.
4.
Mao
,
Y.
,
1987
,
The Interaction Between a Pipeline and an Erodible Bed
,
Technical University of Denmark
,
Kongens Lyngby, Denmark
.
5.
Subhasish
,
D.
, and
P
,
S. N.
,
2008
, “
Clear-Water Scour Below Underwater Pipelines Under Steady Flow
,”
J. Hydraul. Eng.
,
134
(
5
), pp.
588
600
.
6.
Liu
,
R.
,
Yan
,
S. W.
, and
Wu
,
X. L.
, 2013, “
Model Test Studies on soil Restraint to Pipeline Buried in Bohai Soft Clay
,”
J. Pipeline Syst. Eng. Prac.
,
4
(1), pp. 49–56.
7.
Zhang
,
Q.
,
Draper
,
S.
,
Liang
,
C.
,
Zhao
,
M.
, and
An
,
H.
,
2016
, “
Experimental Study of Local Scour Beneath Two Tandem Pipelines in Steady Current
,”
Coastal Eng. J.
,
59
(
2
), p.
1750002
.
8.
Griffiths
,
T.
,
Draper
,
S.
,
Sun
,
W.
,
White
,
D.
,
Cheng
,
L.
, and
An
,
H.
,
2016
, “
Investigation of Scour Onset Under Seabed Pipelines With Geometric Irregularities
,”
Scour and Erosion
,
CRC Press
/
Balkema
, Boca Raton, FL, pp.
191
200
.
9.
Griffiths
,
T.
,
Draper
,
S.
,
Sun
,
W.
,
White
,
D.
,
Cheng
,
L.
, and
An
,
H.
,
2016
, “
Exploring the Bifurcation Between Sedimentation Versus Scour Onset Below Pipelines in Unidirectional Currents
,”
Scour and Erosion
,
J.
Harris
,
R.
Whitehouse
, and
S.
Moxon
, eds.,
CRC Press
/
Balkema
, Boca Raton, FL, pp.
201
211
.
10.
Li
,
M. G.
,
Chen
,
J. J.
,
Wang
,
J. H.
, and
Zhu
,
Y. F.
,
2018
, “
Comparative Study of Construction Methods for Deep Excavations Above Shield Tunnels
,”
Tunnelling Underground Space Technol.
,
71
, pp.
329
339
.
11.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2002
,
The Mechanics of Scour in the Marine Environment
,
River Edge
,
NJ
.
12.
Sumer
,
B. M.
,
Truelsen
,
C.
,
Sichmann
,
T.
, and
Fredsøe
,
J.
,
2001
, “
Onset of Scour Below Pipelines and Self-Burial
,”
Coastal Eng.
,
42
(
4
), pp.
313
335
.
13.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1990
, “
Scour Below Pipelines in Waves
,”
J. Waterw. Port, Coastal, Ocean Eng.
,
116
(
3
), pp.
307
323
.
14.
Fredsøe
,
J.
,
Sumer
,
B. M.
, and
Arnskov
,
M. M.
,
1992
, “
Time Scale for Wave/Current Scour Below Pipelines
,” First International Offshore Polar Engineering Conference, Edinburgh, UK, Aug. 11–16, pp. 11–16.
15.
Mirmohammadi
,
A.
, and
Ketabdari
,
M. J.
,
2011
, “
Numerical Simulation of Wave Scouring Beneath Marine Pipeline Using Smoothed Particle Hydrodynamics
,”
Int. J. Sediment Res.
,
26
(
3
), pp.
331
342
.
16.
Brørs
,
B.
,
1999
, “
Numerical Modeling of Flow and Scour at Pipelines
,”
J. Hydraul. Eng.
,
125
(
5
), pp. 511–523.https://ascelibrary.org/doi/10.1061/%28ASCE%290733-9429%281999%29125%3A5%28511%29
17.
Li
,
F.
, and
Cheng
,
L.
,
1999
, “
Numerical Model for Local Scour Under Offshore Pipelines
,”
J. Hydraul. Eng.
,
125
(
4
), pp.
400
406
.
18.
Yang
,
J.
,
Low
,
Y. M.
,
Lee
,
C.-H.
, and
Chiew
,
Y.-M.
,
2018
, “
Numerical Simulation of Scour Around a Submarine Pipeline Using Computational Fluid Dynamics and Discrete Element Method
,”
Appl. Math. Model.
,
55
, pp.
400
416
.
19.
Ajdehak
,
E.
,
Zhao
,
M.
,
Cheng
,
L.
, and
Draper
,
S.
,
2018
, “
Numerical Investigation of Local Scour Beneath a Sagging Subsea Pipeline in Steady Currents
,”
Coastal Eng.
,
136
, pp.
106
118
.
20.
Liu
,
M.
,
Lu
,
L.
,
Teng
,
B.
,
Zhao
,
M.
, and
Tang
,
G.
,
2016
, “
Numerical Modeling of Local Scour and Forces for Submarine Pipeline Under Surface Waves
,”
Coastal Eng.
,
116
, pp.
275
288
.
21.
Zhao
,
M.
,
Cheng
,
L.
, and
An
,
H.
,
2012
, “
Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder in Transverse Direction in Oscillatory Flow
,”
Ocean Eng.
,
41
, pp.
39
52
.
22.
Li
,
X.
,
Wang
,
Y.
,
Li
,
G.
,
Jiang
,
M.
, and
He
,
X.
,
2011
, “
Experimental Investigation of Vortex-Induced Vibrations of Long Free Spans Near Seabed
,”
Sci. China Technol. Sci.
,
54
(
3
), pp.
698
704
.
23.
Sumer
,
B. M.
, and
Fredsoe
,
J.
, 1994, “
Review on Vibrations of Marine Pipelines
,” Fourth International Offshore Polar Engineering Conference, Osaka, Japan, Apr. 10–15, pp. 81–90.https://www.onepetro.org/conferences/ISOPE/ISOPE94
24.
Tsahalis
,
D. T.
,
1987
, “
Vortex-Induced Vibrations Due to Steady and Wave-Induced Currents of a Flexible Cylinder Near a Plane Boundary
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
2
), pp.
112
118
.
25.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101202
.
26.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
27.
Zhao
,
M.
, and
Cheng
,
L.
,
2011
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary
,”
J. Fluids Struct.
,
27
(
7
), pp.
1097
1110
.
28.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2004
, “
Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder With Low Mass-Damping in a Turbulent Flow
,”
J. Fluids Struct.
,
19
(
4
), pp.
449
466
.
29.
Sanchis
,
A.
,
Sælevik
,
G.
, and
Grue
,
J.
,
2008
, “
Two-Degree-of-Freedom Vortex-Induced Vibrations of a Spring-Mounted Rigid Cylinder With Low Mass Ratio
,”
J. Fluids Struct.
,
24
(
6
), pp.
907
919
.
30.
Mittal
,
S.
, and
Kumar
,
V.
,
1999
, “
Finite Element Study of Vortex-Induced Cross-Flow and in-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
31
(
7
), pp.
1087
1120
.
31.
Zhao
,
M.
,
Kaja
,
K.
,
Xiang
,
Y.
, and
Yan
,
G.
,
2013
, “
Vortex-Induced Vibration (VIV) of a Circular Cylinder in Combined Steady and Oscillatory Flow
,”
Ocean Eng.
,
73
, pp.
83
95
.
32.
Sumer
,
B. M.
,
Mao
,
Y.
, and
Fredsøe
,
J.
,
1988
, “
Interaction Between Vibrating Pipe and Erodible Bed
,”
J. Waterw. Port Coastal Ocean Eng.
,
114
(
1
), pp.
81
92
.
33.
Gao
,
F.
,
Yang
,
B.
,
Yan
,
S.
, and
Wu
,
Y.
,
2006
, “
Physical Modeling of Current-Induced Seabed Scour Around a Vibrating Submarine Pipeline
,”
Sixth International Offshore Polar Engineering Conference
, San Francisco, CA, May 28–June 2, pp. 108–112.https://www.onepetro.org/conference-paper/ISOPE-I-06-393
34.
Zhao
,
M.
, and
Cheng
,
L.
,
2010
, “
Numerical Investigation of Local Scour Below a Vibrating Pipeline Under Steady Currents
,”
Coastal Eng.
,
57
(
4
), pp.
397
406
.
35.
Li
,
M.
,
Yu
,
H.
,
Wang
,
J.
,
Xia
,
X.
, and
Chen
,
J.
,
2015
, “
A Multiscale Coupling Approach Between Discrete Element Method and Finite Difference Method for Dynamic Analysis
,”
Int. J. Numer. Methods Eng.
,
102
(
1
), pp.
1
21
.
36.
Barkhudarov
,
M.
, and
Wei
,
G.
,
2006
, “
Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal
,”
Modeling of Casting, Welding, and Advanced Solidification Processes-XI
, Opio, France, May 28–June 2, pp.
71
–7
8
.
37.
Zhang
,
Q.
,
Zhou
,
X. L.
, and
Wang
,
J. H.
,
2017
, “
Numerical Investigation of Local Scour Around Three Adjacent Piles With Different Arrangements Under Current
,”
Ocean Eng.
,
142
, pp.
625
638
.
38.
Liao
,
C.
,
Tong
,
D.
,
Jeng
,
D.-S.
, and
Zhao
,
H.
,
2018
, “
Numerical Study for Wave-Induced Oscillatory Pore Pressures and Liquefaction Around Impermeable Slope Breakwater Heads
,”
Ocean Eng.
,
157
, pp.
364
375
.
39.
Liao
,
C.
,
Tong
,
D.
, and
Chen
,
L.
,
2018
, “
Pore Pressure Distribution and Momentary Liquefaction in Vicinity of Impermeable Slope-Type Breakwater Head
,”
Appl. Ocean Res.
,
78
, pp.
290
306
.
40.
Yakhot
,
V.
, and
Smith
,
L. M.
,
1992
, “
The Renormalization Group, the E-Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
,
7
(
1
), pp.
35
61
.
41.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
42.
Mastbergen
,
D. R.
, and
Van Den Berg
,
J. H.
,
2003
, “
Breaching in Fine Sands and the Generation of Sustained Turbidity Currents in Submarine Canyons
,”
Sedimentology
,
50
(
4
), pp.
625
637
.
43.
Soulsby
,
R.
,
1997
,
Dynamics of Marine Sands
,
Thomas Thelford
, London.
44.
van Rijn
,
L.
,
1984
, “
Sediment Transport—Part I: Bed Load Transport
,”
J. Hydraul. Eng.
,
110
(
10
), pp.
1431
1456
.
45.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
46.
Liang
,
D.
,
Cheng
,
L.
, and
Li
,
F.
,
2005
, “
Numerical Modeling of Flow and Scour Below a Pipeline in Currents—Part II: Scour Simulation
,”
Coastal Eng.
,
52
(
1
), pp.
43
62
.
47.
Yang
,
B.
,
Gao
,
F. P.
,
Jeng
,
D. S.
, and
Wu
,
Y. X.
,
2008
, “
Experimental Study of Vortex-Induced Vibrations of a Pipeline Near an Erodible Sandy Seabed
,”
Ocean Eng.
,
35
(
3–4
), pp.
301
309
.
48.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
(
420
), pp.
85
130
.
49.
Fredso̸e
,
J.
,
Sumer
,
B. M.
,
Andersen
,
J.
, and
Hansen
,
E. A.
,
1987
, “
Transverse Vibrations of a Cylinder Very Close to a Plane Wall
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
1
), pp.
52
60
.
50.
Khalak
,
A.
, and
Williamson
,
C. H. K.
,
1996
, “
Dynamics of a Hydroelastic Cylinder With Very Low Mass and Damping
,”
J. Fluids Struct.
,
10
(
5
), pp.
455
472
.
You do not currently have access to this content.