This study focuses on the buckling of pipelines in shallow waters subjected to surface gravity waves. The wave-induced uplift forces on pipelines buried in sandy seabeds are investigated using Biot's consolidation model. Empathetic imperfection model proposed by Taylor and Tran (1994, “Experimental and Theoretical Studies in Subsea Pipeline Buckling," Mar. Struct., 9(2), pp. 211–257.) is used for the study. Thereafter, buckling analyses are performed on the pipeline with the combined temperature and the wave-induced loads. The differences in the critical buckling temperatures for the pipe with consideration of wave loads are analyzed within a range of sea states. The influence of wave loads is found significant for low burial depth ratios.

References

References
1.
Nielsen
,
N. J.
,
Lyngberg
,
B.
, and
Pedersen
,
P. T.
,
1990
, “
Upheaval Buckling Failures of Insulated Buried Pipelines: A Case Story
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
May 7–10
.
2.
Palmer
,
A. C.
,
Tebboth
,
L.
,
Miles
,
D.
, and
Calladine
,
C. R.
,
1999
, “
Instability of Pipelines on Slopes
,”
ASME J. Appl. Mech.
,
66
(
3
), pp.
794
799
.
3.
Guijt
,
J.
,
1990
, “
Upheaval Buckling of Offshore Pipelines: Overview and Introduction
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
May 7–10
.
4.
Liu
,
R.
, and
Yan
,
S.
,
2012
, “
Brief History of Upheaval Buckling Studies for Subsea Buried Pipeline
,”
J. Pipeline Syst. Eng. Pract.
,
4
(
3
), pp.
170
183
.
5.
Hobbs
,
R. E.
,
1984
, “
In-Service Buckling of Heated Pipelines
,”
J. Transp. Eng.
,
110
(
2
), pp.
175
189
.
6.
Ju
,
G. T.
, and
Kyriakides
,
S.
,
1988
, “
Thermal Buckling of Offshore Pipelines
,”
ASME J. Offshore Mech. Arct. Eng.
,
110
(
4
), pp.
355
364
.
7.
Palmer
,
A. C.
,
Ellinas
,
C. P.
,
Richards
,
D. M.
, and
Guijt
,
J.
,
1990
, “
Design of Submarine Pipelines Against Upheaval Buckling
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
May 7–10
.
8.
Taylor
,
N.
, and
Ben-Gan
,
A.
,
1986
, “
Submarine Pipeline Buckling—Imperfection Studies
,”
Thin-Walled Struct.
,
4
(
4
), pp.
295
323
.
9.
Maltby
,
T. C.
, and
Calladine
,
C. R.
,
1995
, “
An Investigation Into Upheaval Buckling of Buried Pipelines—II: Theory and Analysis of Experimental Observations
,”
Int. J. Mech. Sci.
,
37
(
9
), pp.
965
983
.
10.
Sumer
,
B. M.
,
2014
,
Liquefaction Around Marine Structures
,
World Scientific
,
Singapore
.
11.
Putnam
,
J. A.
,
1949
, “
Loss of Wave Energy Due to Percolation in a Permeable Sea Bottom
,”
Eos Trans. Am. Geophys. Union
,
30
(
3
), pp.
349
356
.
12.
Mallard
,
W. W.
, and
Dalrymple
,
R. A.
,
1977
, “
Water Waves Propagating Over a Deformable Bottom
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
May 2–5
.
13.
Biot
,
M. A.
,
1941
, “
General Theory of Three‐Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
.
14.
Yamamoto
,
T.
,
Koning
,
H. L.
,
Sellmeijer
,
H.
, and
Van Hijum
,
E. P.
,
1978
, “
On the Response of a Poroelastic Bed to Water Waves
,”
J. Fluid Mech.
,
87
(
1
), pp.
193
206
.
15.
Madsen
,
O. S.
,
1978
, “
Wave-Induced Pore Pressures and Effective Stresses in a Porous Bed
,”
Geotechnique
,
28
(
4
), pp.
377
393
.
16.
MacPherson
,
H.
,
1978
, “
Wave Forces on Pipeline Buried in Permeable Seabed
,”
ASCE J. Waterw., Port, Coastal Ocean Div.
,
104
(
4
), pp.
407
419
.https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0008437
17.
McDougal
,
W. G.
,
Davidson
,
S. H.
,
Monkmeyer
,
P. L.
, and
Sollitt
,
C. K.
,
1988
, “
Wave-Induced Forces on Buried Pipelines
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
114
(
2
), pp.
220
236
.
18.
Magda
,
W.
,
1997
, “
Wave-Induced Uplift Force on a Submarine Pipeline Buried in a Compressible Seabed
,”
Ocean Eng.
,
24
(
6
), pp.
551
576
.
19.
Zhang
,
J.
,
Li
,
Q.
,
Ding
,
C.
,
Zheng
,
J.
, and
Zhang
,
T.
,
2016
, “
Experimental Investigation of Wave-Driven Pore-Water Pressure and Wave Attenuation in a Sandy Seabed
,”
Adv. Mech. Eng.
,
8
(
6
), pp. 1–10.
20.
Neelamani
,
S.
, and
Al-Banaa
,
K.
,
2013
, “
A Scientific Approach to Estimate the Safe Depth of Burial of Submarine Pipelines Against Wave Forces for Different Marine Soil Conditions
,”
Ocean Syst. Eng.
,
3
(
1
), pp.
9
34
.
21.
Neelamani
,
S.
, and
Al-Banaa
,
K.
,
2012
, “
Effect of Varying the Depth of Burial of Submarine Pipeline on Wave Forces in Well Graded and High Hydraulic Conductivity Sand
,”
Coastal Eng. J.
,
54
(
2
), p.
1250016
.
22.
Madhusudhan
,
C.
,
Sundar
,
V.
, and
Narasimha Rao
,
S.
,
2002
, “
Wave-Induced Forces Around Buried Pipelines
,”
Ocean Eng.
,
29
(
5
), pp.
533
544
.
23.
Thusyanthan
,
I.
,
2012
, “
Seabed Soil Classification, Soil Behaviour, and Pipeline Design
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
,
Apr. 30–May 3
.
24.
Kellet
,
J.
,
1974
, “
Terzaghi's Theory of One Dimensional Primary Consolidation of Soils and Its Application
,” Library of Bureau of Mineral Resources, Geology, and Geophysics, Canberra, Australia, Record No.
1974/108
.https://data.gov.au/dataset/terzaghis-theory-of-one-dimensional-primary-consolidation-of-soils-and-its-application
25.
Shabani
,
B.
,
Jeng
,
D.-S.
,
Ye
,
J.
, and
Guo
,
Y.
,
2010
, “
Numerical Modeling of Wave-Induced Pore Pressure Around a Buried Pipeline: WSPI-3D Model
,”
ASME
Paper No. OMAE2010-20528.
26.
Hsu
,
J. R. C.
, and
Jeng
,
D. S.
,
1994
, “
Wave‐Induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness
,”
Int. J. Numer. Anal. Methods Geomech.
,
18
(
11
), pp.
785
807
.
27.
Verruijt
,
A.
,
1969
,
Elastic Storage of Aquifers in Flow Through Porous Media
,
R. J. M.
De Wiest
, ed.,
Academic Press
,
New York
, pp.
331
376
.
28.
Sakai
,
T.
,
Mase
,
H.
,
Cox
,
D. T.
, and
Ueda
,
Y.
,
1993
, “
Field Observation of Wave-Induced Porewater Pressures
,”
Coastal Engineering 1992
,
Venice, Italy
,
Oct. 4–9
, pp.
2397
2410
.
29.
DNV
,
2007
, “
Environmental Conditions and Environmental Loads
,” Det Norske Veritas, Norway, Standard No.
DNV-RP-C205
.https://rules.dnvgl.com/docs/pdf/dnv/codes/docs/2010-10/rp-c205.pdf
30.
Taylor
,
N.
, and
Tran
,
V.
,
1996
, “
Experimental and Theoretical Studies in Subsea Pipeline Buckling
,”
Mar. Struct.
,
9
(
2
), pp.
211
257
.
31.
Riyaldul
,
A.
,
Roy
,
K.
,
Hawlader
,
B.
, and
Dhar
,
A.
,
2017
, “
Finite Element Analysis of Upheaval Buckling of Submarine Pipelines With Initial Imperfection
,” 70th Canadian Geotechnical Conference (GeoOttawa 2017), Ottawa, ON, Canada, Oct. 1–4.https://www.researchgate.net/publication/257759214
32.
DNV
,
2007
, “
Global Buckling of Submarine Pipelines Structural Design Due to High Temperature/High Pressure
,” Det Norske Veritas, Norway, Standard No.
DNV-RP-F110
.https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2007-10/RP-F110.pdf
33.
ALA
,
2001
, “
Guidelines for the Design of Buried Steel Pipe
,” American Society of Civil Engineers, American Lifeline Alliance, Washington, DC, Dec. 8, 2018, https://www.americanlifelinesalliance.com/pdf/Update061305.pdf
You do not currently have access to this content.