Pistons are fundamental structural elements in any engineering practices such as mechanical, civil, aerospace, and offshore engineering. Their strength strongly depends on buckling load, and such information is a major requirement in the design process. Euler's linear buckling equation is the most common and most used model in design. It is well suited for linear elastic members without geometrical imperfections and nonlinear behavior. Several analytical and experimental investigations of typical hydraulic cylinders have been carried out through the years but most of the available standards still use a linear approach with many simplifications. Pistons are slender beams with not-uniform cross section, which need a stronger effort than the classical Euler's approach. The present paper aims to discuss limitations of current DNV standards for piston design in offshore technologies when compared to classical numerical approaches and reference results provided by the existing literature.

References

References
1.
DNVGL
,
2017
, “
Class Guideline: Hydraulic Cylinders
,” DNVGL, Oslo, Norway, Standard No. DNVGL-CG-0194.
2.
Timoshenko
,
S.
,
2010
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
, New York.
3.
Farghaly
,
S. H.
,
1994
, “
Vibration and Stability Analysis of Timoshenko Beams With Discontinuities in Cross-Section
,”
J. Sound Vib.
,
174
(
5
), pp.
591
605
.
4.
Gamez-Montero
,
P. J.
,
Salazar
,
E.
,
Castilla
,
R.
,
Freire
,
J.
,
Khamashta
,
M.
, and
Codina
,
E.
,
2009
, “
Misalignment Effects on the Load Capacity of a Hydraulic Cylinder
,”
Int. J. Mech. Sci.
,
51
(
2
), pp.
105
113
.
5.
Borgia
,
F.
,
2017
,
Kinematic Optimization of an Overboarding Chute Mechanism
,
University of Bologna
,
Bologna, Italy
.
6.
Fantuzzi
,
N.
,
Borgia
,
F.
,
Formenti
,
M.
, and
Righini
,
R.
,
2018
, “
Mechanical Optimization of an Innovative Overboarding Chute for Floating Umbilical Systems
,”
Ocean Eng.
, (Under review).
7.
Timoshenko
,
S.
, and
Gere
,
J. M.
,
1985
,
Theory of Elastic Stability
,
2nd ed.
,
McGraw-Hill
, New York.
8.
Eslami
,
M. R.
,
2018
,
Buckling and Postbuckling of Beams, Plates, and Shells
(Structural Integrity), Vol.
1
,
Springer
, Cham, Switzerland.
9.
Lee
,
H. P.
, and
Ng
,
T. Y.
,
1994
, “
Vibration and Buckling of a Stepped Beam
,”
Appl. Acous.
,
42
(
3
), pp.
257
266
.
10.
Chen
,
C.-N.
,
2003
, “
Buckling Equilibrium Equations of Arbitrarily Loaded Nonprismatic Composite Beams and the DQEM Buckling Analysis Using EDQ
,”
Appl. Math. Model.
,
27
(
1
), pp.
27
46
.
11.
Ioakimidis
,
N. I.
,
2018
, “
The Energy Method in Problems of Buckling of Bars With Quantifier Elimination
,”
Structures
,
13
, pp.
47
65
.
12.
Gamez-Montero
,
P. J.
,
Salazar
,
E.
,
Castilla
,
R.
,
Freire
,
J.
,
Khamashta
,
M.
, and
Codina
,
E.
,
2009
, “
Friction Effects on the Load Capacity of a Column and a Hydraulic Cylinder
,”
Int. J. Mech. Sci.
,
51
(
2
), pp.
145
151
.
13.
Nicoletto
,
G.
, and
Marin
,
T.
,
2011
, “
Failure of a Heavy-Duty Hydraulic Cylinder and Its Fatigue Re-Design
,”
Eng. Failure Anal.
,
18
(
3
), pp.
1030
1036
.
14.
Tomski
,
L.
, and
Uzny
,
S.
,
2011
, “
A Hydraulic Cylinder Subjected to Euler's Load in Aspect of the Stability and Free Vibrations Taking Into Account Discrete Elastic Elements
,”
Arch. Civ. Mech. Eng.
,
11
(
3
), pp.
769
785
.
15.
Narvydas
,
E.
,
2016
, “
Buckling Strength of Hydraulic Cylinders—An Engineering Approach and Finite Element Analysis
,”
Mechanika
,
22
, pp.
474
477
.
16.
Tavares
,
S. M. O.
,
Viriato
,
N.
,
Vaz
,
M.
, and
de Castro
,
P. M. S. T.
,
2016
, “
Failure Analysis of the Rod of a Hydraulic Cylinder, XV Portuguese Conference on Fracture (PCF 2016)
,
Paço de Arcos, Portugal
,
Feb. 10–12
, pp.
173
180
.
17.
Balavignesh
,
V. N.
,
Balasubramaniam
,
B.
, and
Kotkunde
,
N.
,
2017
, “
Numerical Investigations of Fracture Parameters for a Cracked Hydraulic Cylinder Barrel and Its Redesign
,”
Fifth International Conference on Materials Processing and Characterization (ICMPC 2016)
,
Goa Campus
, pp.
927
936
.
18.
Kuliński
,
K.
, and
Przybylski
,
J.
,
2017
, “
Piezoelectric Effect on Transversal Vibrations and Buckling of a Beam With Varying Cross Section
,”
Mech. Res. Commun.
,
82
(1), pp.
43
48
.
19.
Wang
,
X.
, and
Duan
,
G.
,
2014
, “
Discrete Singular Convolution Element Method for Static, Buckling and Free Vibration Analysis of Beam Structures
,”
App. Math. Comput.
,
234
, pp.
36
51
.
20.
Konstantakopoulos
,
T. G.
,
Raftoyiannis
,
I. G.
, and
Michaltsos
,
G. T.
,
2012
, “
Stability of Steel Columns With Non-Uniform Cross-Sections
,”
Open Constr. Build. Technol. J.
,
6
, pp.
1
7
.
21.
Naguleswaran
,
S.
,
2005
, “
Vibration and Stability of Uniform Euler–Bernoulli Beams With Step Change in Axial Force
,”
Int. J. Mech. Eng. Educ.
,
33
(
1
), pp.
64
76
.
22.
Naguleswaran
,
S.
,
2003
, “
Vibration and Stability of an Euler–Bernoulli Beam With up to Three-Step Changes in Cross-Section and in Axial Force
,”
Int. J. Mech. Sci.
,
45
(
9
), pp.
1563
1579
.
23.
Ermopoulos
,
J. C.
,
1999
, “
Buckling Length of Non-Uniform Members Under Stepped Axial Loads
,”
Comput. Struct.
,
73
(
6
), pp.
573
582
.
24.
Ferreira
,
A. J. M.
,
2009
,
MATLAB Codes for Finite Element Analysis
,
Springer
, Berlin, Germany.
25.
Gottlieb
,
D.
, and
Orszag
,
S. A.
,
1977
,
Numerical Analysis of Spectral Methods. Theory and Applications
Old Dominion University
,
Norfolk, VA
.
26.
Tornabene
,
F.
,
Fantuzzi
,
N.
,
Ubertini
,
F.
, and
Viola
,
E.
,
2015
, “
Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey
,”
ASME Appl. Mech. Rev.
,
67
(1), pp.
1
55
.
27.
Shu
,
C.
,
2000
,
Differential Quadrature and Its Application in Engineering
,
Springer-Verlag
,
London
.
28.
Viola
,
E.
, and
Tornabene
,
F.
,
2005
, “
Vibration Analysis of Damaged Circular Arches With Varying Cross Section
,”
SID-SDHM
,
1
(
2
), pp.
155
169
.http://www.techscience.com/doi/10.3970/sdhm.2005.001.155.pdf
29.
E.
,
Viola
,
M.
,
Dilena
,
F.
, and
Tornabene
,
F.
,
2007
, “
Analytical and Numerical Results for Vibration Analysis of Multi-Stepped and Multi-Damaged Circular Arches
,”
J. Sound Vib.
,
299
(
1–2
), pp.
143
163
.
30.
Marzani
,
A.
,
Tornabene
,
F.
, and
Viola
,
E.
,
2008
, “
Nonconservative Stability Problems Via Generalized Differential Quadrature Method
,”
J. Sound Vib.
,
315
(
1–2
), pp.
176
196
.
31.
Viola
,
E.
,
Marzani
,
A.
, and
Fantuzzi
,
N.
,
2016
, “
Interaction Effect of Cracks on Flutter and Divergence Instabilities of Cracked Beams Under Subtangential Forces
,”
Eng. Fract. Mech.
,
151
, pp.
109
129
.
32.
Viola
,
E.
,
Miniaci
,
M.
,
Fantuzzi
,
N.
, and
Marzani
,
A.
,
2015
, “
Vibration Analysis of Multi-Stepped and Multi-Damaged Parabolic Arches Using GDQ
,”
Curved Layer Struct.
,
2
(1), pp.
28
49
.https://www.researchgate.net/publication/272022310_Vibration_analysis_of_multi-stepped_and_multi-damaged_parabolic_arches_using_GDQ
You do not currently have access to this content.