Global warming is inducing sea ice retreat, which is opening new shipping routes and extending the accessible area for resource exploration. This encourages an increasing research interest in sea ice behavior. With the sea ice melting, level ice is broken up by waves propagated from the open ocean, resulting in an environment where both floating ice floes and waves exist. Such wave–ice interaction can bring significant influences on the potential human activities. This work presents a series of numerical simulations to predict the behavior of a circular ice floe forced by regular waves, with different wavelength and wave amplitude conditions being investigated. The numerical model was validated against experiments, and it revealed good accuracy in predicting the rigid body motion of an ice floe, including some extreme cases that are difficult to model by previous methods. Two specific behaviors were observed during the numerical simulations, namely overwash and scattering. Both behaviors are discussed in detail to analyze their linear/nonlinear effect on the ice floe motion. The applied model could be used to provide valuable estimations for arctic engineering purposes.

References

References
1.
Stroeve
,
J. C.
,
Kattsov
,
V.
,
Barrett
,
A.
,
Serreze
,
M.
,
Pavlova
,
T.
,
Holland
,
M.
, and
Meier
,
W. N.
,
2012
, “
Trends in Arctic Sea Ice Extent From CMIP5, CMIP3 and Observations
,”
Geophys. Res. Lett.
,
39
(
16
), p. L16502.
2.
Smith
,
L. C.
, and
Stephenson
,
S. R.
,
2013
, “
New Trans-Arctic Shipping Routes Navigable by Midcentury
,”
Proc. Natl. Acad. Sci.
,
110
(
13
), pp.
E1191
E1195
.
3.
Thomson
,
J.
,
Squire
,
V.
,
Ackley
,
S.
,
Rogers
,
E.
,
Babanin
,
A.
,
Guest
,
P.
,
Maksym
,
T.
,
Wadhams
,
P.
,
Stammerjohn
,
S.
, and
Fairall
,
C.
,
2013
, “
Sea State and Boundary Layer Physics of the Emerging Arctic Ocean
,” Washington Univ Seattle Applied Physics Laboratory, Report No. APL-UW-1306.
4.
Lee
,
C. M.
,
Cole
,
S.
,
Doble
,
M.
,
Freitag
,
L.
,
Hwang
,
P.
,
Jayne
,
S.
,
Jeffries
,
M.
,
Krishfield
,
R.
,
Maksym
,
T.
, and
Maslowski
,
W.
,
2012
, “
Marginal Ice Zone (MIZ) Program: Science and Experiment Plan
,” Washington Univ. Seattle Applied Physics Laboratory, Report No. APL-UW-1201.
5.
Martin
,
S.
, and
Becker
,
P.
,
1987
, “
High-Frequency Ice Floe Collisions in the Greenland Sea During the 1984 Marginal Ice Zone Experiment
,”
J. Geophys. Res.: Oceans
,
92
(
C7
), pp.
7071
7084
.
6.
Wadhams
,
P.
,
1983
, “
A Mechanism for the Formation of Ice Edge Bands
,”
J. Geophys. Res.: Oceans
,
88
(
C5
), pp.
2813
2818
.
7.
Dai
,
M.
,
Shen
,
H. H.
,
Hopkins
,
M. A.
, and
Ackley
,
S. F.
,
2004
, “
Wave Rafting and the Equilibrium Pancake Ice Cover Thickness
,”
J. Geophys. Res.: Oceans
,
109
(
C7
), p. C07023.
8.
Montiel
,
F.
,
Squire
,
V.
, and
Bennetts
,
L.
,
2016
, “
Attenuation and Directional Spreading of Ocean Wave Spectra in the Marginal Ice Zone
,”
J. Fluid Mech.
,
790
, pp.
492
522
.
9.
Thomson
,
J.
,
Ackley
,
S.
,
Girard-Ardhuin
,
F.
,
Ardhuin
,
F.
,
Babanin
,
A.
,
Boutin
,
G.
,
Brozena
,
J.
,
Cheng
,
S.
,
Collins
,
C.
,
Doble
,
M.
,
Fairall
,
C.
,
Guest
,
P.
,
Gebhardt
,
C.
,
Gemmrich
,
J.
,
Graber
,
H. C.
,
Holt
,
B.
,
Lehner
,
S.
,
Lund
,
B.
,
Meylan
,
M. H.
,
Maksym
,
T.
,
Montiel
,
F.
,
Perrie
,
W.
,
Persson
,
O.
,
Rainville
,
L.
,
Rogers
,
W. E.
,
Shen
,
H.
,
Shen
,
H.
,
Squire
,
V.
,
Stammerjohn
,
S.
,
Stopa
,
J.
,
Smith
,
M. M.
,
Sutherland
,
P.
, and
Wadhams
,
P.
,
2018
, “
Overview of the Arctic Sea State and Boundary Layer Physics Program
,”
J. Geophys. Res.: Oceans
(accepted).
10.
Luo
,
W.-Z.
,
Guo
,
C.-Y.
,
Wu
,
T.-C.
, and
Su
,
Y.-M.
,
2018
, “
Experimental Research on Resistance and Motion Attitude Variation of Ship–Wave–Ice Interaction in Marginal Ice Zones
,”
Mar. Struct.
,
58
, pp.
399
415
.
11.
Guo
,
C.-Y.
,
Xie
,
C.
,
Zhang
,
J.-Z.
,
Wang
,
S.
, and
Zhao
,
D.-G.
,
2018
, “
Experimental Investigation of the Resistance Performance and Heave and Pitch Motions of Ice-Going Container Ship Under Pack Ice Conditions
,”
China Ocean Eng.
,
32
(
2
), pp.
169
178
.
12.
McGovern
,
D. J.
, and
Bai
,
W.
,
2014
, “
Experimental Study of Wave-Driven Impact of Sea Ice Floes on a Circular Cylinder
,”
Cold Regions Sci. Technol.
,
108
, pp.
36
48
.
13.
Squire
,
V. A.
,
Dugan
,
J. P.
,
Wadhams
,
P.
,
Rottier
,
P. J.
, and
Liu
,
A. K.
,
1995
, “
Of Ocean Waves and Sea Ice
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
115
168
.
14.
Squire
,
V.
,
2007
, “
Of Ocean Waves and Sea-Ice Revisited
,”
Cold Regions Sci. Technol.
,
49
(
2
), pp.
110
133
.
15.
Meylan
,
M. H.
,
Yiew
,
L. J.
,
Bennetts
,
L. G.
,
French
,
B. J.
, and
Thomas
,
G. A.
,
2015
, “
Surge Motion of an Ice Floe in Waves: Comparison of a Theoretical and an Experimental Model
,”
Ann. Glaciol.
,
56
(
69
), pp.
155
159
.
16.
Yiew
,
L.
,
Bennetts
,
L.
,
Meylan
,
M.
,
French
,
B.
, and
Thomas
,
G.
,
2016
, “
Hydrodynamic Responses of a Thin Floating Disk to Regular Waves
,”
Ocean Modell.
,
97
, pp.
52
64
.
17.
Grotmaack
,
R.
, and
Meylan
,
M. H.
,
2006
, “
Wave Forcing of Small Floating Bodies
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
132
(
3
), pp.
192
198
.
18.
Meylan
,
M. H.
, and
Squire
,
V. A.
,
1996
, “
Response of a Circular Ice Floe to Ocean Waves
,”
J. Geophys. Res.: Oceans
,
101
(
C4
), pp.
8869
8884
.
19.
Montiel
,
F. F.
,
2012
, “
Numerical and Experimental Analysis of Water Wave Scattering by Floating Elastic Plates
,” Ph.D. thesis, University of Otago, Dunedin, New Zealand.
20.
Bennetts
,
L.
, and
Williams
,
T.
,
2015
, “
Water Wave Transmission by an Array of Floating Discs
,”
Proc. R. Soc. London A
,
471
(
2173
), p.
20140698
.
21.
Skene
,
D.
,
Bennetts
,
L.
,
Meylan
,
M.
, and
Toffoli
,
A.
,
2015
, “
Modelling Water Wave Overwash of a Thin Floating Plate
,”
J. Fluid Mech.
,
777
, p. R3.
22.
Jasak
,
H.
,
2017
, “
CFD Analysis in Subsea and Marine Technology
,”
IOP Conference Series: Materials Science and Engineering
,
Stavanger, Norway
,
Nov. 30–Dec. 1
, p.
012009
.
23.
Yiew
,
L.
,
Bennetts
,
L.
,
Meylan
,
M.
,
Thomas
,
G.
, and
French
,
B.
,
2017
, “
Wave-Induced Collisions of Thin Floating Disks
,”
Phys. Fluids
,
29
(
12
), p.
127102
.
24.
Flow Science Inc
,
2015
, “
Flow-3d User's Manual, v11.1
,” Flow Science, Santa Fe, NM.
25.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
27.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
1991
,
Water Wave Mechanics for Engineers and Scientists
, Vol.
2
,
World Scientific Publishing Company
, Hackensack, NJ.
28.
Wei
,
G.
,
2015
, “
The Sponge Layer Method in Flow-3d
,” Flow Science, Santa Fe, NM.
29.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
, Cambridge, UK.
30.
Bhinder
,
M. A.
,
Mingham
,
C. G.
,
Causon
,
D. M.
,
Rahmati
,
M. T.
,
Aggidis
,
G. A.
, and
Chaplin
,
R. V.
,
2009
, “
A Joint Numerical and Experimental Study of a Surging Point Absorbing Wave Energy Converter (WRASPA)
,”
ASME
Paper No. OMAE2009-79392.
31.
Freitas
,
C. J.
,
2002
, “
The Issue of Numerical Uncertainty
,”
Appl. Math. Modell.
,
26
(
2
), pp.
237
248
.
32.
Tuković
,
Ž.
, and
Jasak
,
H.
,
2012
, “
A Moving Mesh Finite Volume Interface Tracking Method for Surface Tension Dominated Interfacial Fluid Flow
,”
Comput. Fluids
,
55
, pp.
70
84
.
You do not currently have access to this content.