Real-time hybrid testing of floating wind turbines is conducted at model scale. The semisubmersible, triangular platform, similar to the WindFloat platform, is built instead to support two, counter-rotating vertical-axis wind turbines (VAWTs). On account of incongruous scaling issues between the aerodynamic and the hydrodynamic loading, the wind turbines are not constructed at the same scale as the floater support. Instead, remote-controlled plane motors and propellers are used as actuators to mimic only the tangential forces on the wind-turbine blades, which are attached to the physical (floater-support) model. The application of tangential forces on the VAWTs is used to mimic the power production stage of the turbine. A control algorithm is implemented using the wind-turbine generators to optimize the platform heading and hence, the theoretical power absorbed by the wind turbines. This experimental approach only seeks to recreate the aerodynamic force, which contributes to the power production. In doing so, the generator control algorithm can thus be validated. The advantages and drawbacks of this hybrid simulation technique are discussed, including the need for low inertia actuators, which can quickly respond to control signals.

References

References
1.
Owens
,
B. C.
,
Hurtado
,
J. E.
,
Paquette
,
J. A.
,
Griffith
,
D. T.
, and
Barone
,
M.
,
2013
, “
Aeroelastic Modeling of Large Off-Shore Vertical-Axis Wind Turbines: Development of the Offshore Wind Energy Simulation Toolkit
,”
AIAA
Paper No. 2013-1552.
2.
Borg
,
M.
, and
Collu
,
M.
,
2015
, “
Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art—Part III: Hydrodynamics and Coupled Modelling Approaches
,”
Renewable Sustainable Energy Rev.
,
46
, pp.
296
310
.
3.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renewable Sustainable Energy
,
3
, p. 043104.
4.
Hau
,
E.
, and
Platz
,
H.
,
2000
,
Wind Turbines-Fundamentals, Technologies, Application, Economics
,
Springer-Verlag
,
Berlin
.
5.
Kanner
,
S.
,
Wang
,
L.
, and
Persson
,
P.-O.
,
2016
, “
Implicit Large-Eddy Simulation of 2D Counter-Rotating Vertical-Axis Wind Turbines
,”
AIAA
Paper No. 2016-1731.
6.
Goupee
,
A.
,
Koo
,
B.
,
Lambrakos
,
K.
, and
Kimball
,
R.
,
2012
, “
Model Tests for Three Floating Wind Turbine Concepts
,”
Offshore Technology Conference
,
Houston, TX
,
Apr. 30–May 3
, Paper No.
OTC-23470-MS
.
7.
Azcona
,
J.
,
Bouchotrouch
,
F.
,
González
,
M.
,
Garciandía
,
J.
,
Munduate
,
X.
,
Kelberlau
,
F.
, and
Nygaard
,
T. A.
,
2014
, “
Aerodynamic Thrust Modelling in Wave Tank Tests of Offshore Floating Wind Turbines Using a Ducted Fan
,”
J. Phys.: Conf. Ser.
,
524
(
1
), p. 012089.
8.
Fowler
,
M. J.
,
Kimball
,
R. W.
,
Thomas
,
D. A.
, and
Goupee
,
A. J.
,
2013
, “
Design and Testing of Scale Model Wind Turbines for Use in Wind/Wave Basin Model Tests of Floating Offshore Wind Turbines
,”
ASME
Paper No. OMAE2013-10122.
9.
Bayati
,
I.
,
Belloli
,
M.
,
Facchinetti
,
A.
, and
Giappino
,
S.
,
2013
, “
Wind Tunnel Tests on Floating Offshore Wind Turbines: A Proposal for Hardware-in-the-Loop Approach to Validate Numerical Codes
,”
Wind Eng.
,
37
(
6
), pp.
557
568
.
10.
Hall
,
M.
,
Moreno
,
J.
, and
Thiagarajan
,
K.
,
2014
, “
Performance Specifications for Real-Time Hybrid Testing of 1:50-Scale Floating Wind Turbine Models
,”
ASME
Paper No. OMAE2014-24497
.
11.
Martin
,
H. R.
,
2011
, “
Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems
,”
Ph.D. thesis
, Maine Maritime Academy, Castine, ME. https://digitalcommons.library.umaine.edu/etd/1578/
12.
Sauder
,
T.
,
Chabaud
,
V.
,
Thys
,
M.
,
Bachynski
,
E. E.
, and
Sæther
,
L. O.
,
2016
, “
Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine—Part I: The Hybrid Approach
,”
ASME
Paper No. OMAE2016-54435.
13.
Kanner
,
S.
,
Yeung
,
R. W.
, and
Koukina
,
E.
,
2016
, “
Hybrid Testing of Model-Scale Floating Wind Turbines Using Autonomous Actuation and Control
,”
MTS/IEEE OCEANS 2016, Monterey
, CA, Sept. 19–23, pp.
1
6
.
14.
Roddier
,
D.
,
Cermelli
,
C.
,
Aubault
,
A.
, and
Weinstein
,
A.
,
2010
, “
WindFloat: A Floating Foundation for Offshore Wind Turbines
,”
J. Renewable Sustainable Energy
,
2
(
3
), p. 033104.
15.
Kanner
,
S.
, and
Persson
,
P.-O.
,
2016
, “
Validation of a High-Order Large-Eddy Simulation Solver Using a Vertical-Axis Wind Turbine
,”
AIAA J.
,
54
(
1
), pp.
101
112
.
16.
Strickland
,
J. H.
,
Webster
,
B. T.
, and
Nguyen
,
T.
,
1979
, “
Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND-79-7058.
17.
Strickland
,
J. H.
,
Smith
,
T.
, and
Sun
,
K.
,
1981
, “
Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study
,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND-81-7017.
18.
Wang
,
L.
,
2015
, “
Discontinuous Galerkin Methods on Moving Domains With Large Deformations
,”
Ph.D. dissertation
, University of California Berkeley, Berkeley, CA. https://escholarship.org/uc/item/84j5b9j8
19.
Chan
,
A. S.
,
Dewey
,
P. A.
,
Jameson
,
A.
,
Liang
,
C.
, and
Smits
,
A. J.
,
2011
, “
Vortex Suppression and Drag Reduction in the Wake of Counter-Rotating Cylinders
,”
J. Fluid Mech.
,
679
, pp.
343
382
.
20.
Saouma
,
V.
, and
Sivaselvan
,
M.
,
2008
,
Hybrid Simulation: Theory, Implementation and Applications
,
Taylor and Francis/Balkema
,
Leiden, The Netherlands
.
21.
Chabaud
,
V.
,
Steen
,
S.
, and
Skjetne
,
R.
,
2013
, “
Real-Time Hybrid Testing for Marine Structures: Challenges and Strategies
,”
ASME
Paper No. OMAE2013-10277.
22.
Bachynski
,
E. E.
,
Chabaud
,
V.
, and
Sauder
,
T.
,
2015
, “
Real-Time Hybrid Model Testing of Floating Wind Turbines: Sensitivity to Limited Actuation
,”
Energy Procedia
,
80
, pp.
2
12
.
23.
Berthelsen
,
P. A.
,
Bachynski
,
E. E.
,
Karimirad
,
M.
, and
Thys
,
M.
,
2016
, “
Real-Time Hybrid Model Tests of a Braceless Semi-Submersible Wind Turbine—Part III: Calibration of a Numerical Model
,”
ASME
Paper No. OMAE2016-54640.
24.
Bachynski
,
E. E.
,
Thys
,
M.
,
Sauder
,
T.
,
Chabaud
,
V.
, and
Saether
,
L. O.
,
2016
, “
Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine—Part II: Experimental Results
,”
ASME
Paper No. OMAE2016-54437.
25.
Hall
,
M.
, and
Goupee
,
A. J.
,
2018
, “
Validation of a Hybrid Modeling Approach to Floating Wind Turbine Basin Testing
,”
Wind Energy
,
21
(
6
), pp.
391
408
.
26.
Koukina
,
E.
,
2014
, “
Simulation of Wind-Loading Torque on Turbines at Model Scale
,” Master's thesis, University of California Berkeley, Berkeley, CA.
27.
Koukina
,
E.
,
Yeung
,
R. W.
, and
Kanner
,
S.
,
2015
, “
Actuation of Wind-Loading Torque on Vertical Axis Turbines at Model Scale
,”
Marine Technology Society and Institute of Electrical and Electronics Engineers Conference
(
OCEANS 2015
),
Genova, Italy
,
May 18–21
.
28.
Jonkman
,
J. M.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
. https://www.nrel.gov/docs/fy09osti/38060.pdf
29.
Berthelsen
,
P. A.
,
Fylling
,
I.
,
Vita
,
L.
, and
Schmidt Paulsen
,
U.
,
2012
, “
Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine
,”
ASME
Paper No. OMAE2012-83335.
30.
Kanner
,
S.
,
2015
, “
Design, Analysis, Hybrid Testing and Orientation Control of a Floating Platform With Counter-Rotating Vertical-Axis Wind Turbines
,”
Ph.D. dissertation
, University of California Berkeley, Berkeley, CA. http://digitalassets.lib.berkeley.edu/etd/ucb/text/Kanner_berkeley_0028E_15814.pdf
31.
Faludi
,
R.
,
2010
,
Building Wireless Sensor Networks
,
O'Reilly Media
,
Sebastopol, CA
.
32.
Premerlani
,
W.
, and
Bizard
,
P.
,
2009
,
Direction Cosine Matrix IMU: Theory
,
DIY DRONE
, pp.
13
15
.
33.
Euston
,
M.
,
Coote
,
P.
,
Mahony
,
R.
,
Kim
,
J.
, and
Hamel
,
T.
,
2008
, “
A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
340
345
.
34.
Ashwill
,
T. D.
,
1992
, “
Measured Data for the Sandia 34-Meter Vertical-Axis Wind Turbine
,” Sandia National Laboratory, Albuquerque, NM, Report No. SAND91-2228.
You do not currently have access to this content.