Marine current energy is a reliable and clean source of energy. Many marine current turbines have been designed and developed over the years. Placement of an appropriately designed duct or shroud around the turbine significantly improves the turbine performance. In the present work, a ducted Savonius turbine (DST) is designed and optimized and its performance analysis carried out. The components of DSTs are simple and easily available and can be manufactured in developing countries like Fiji. A scaled-down model of 1/20 of a DST was fabricated and tested in a water stream at a velocity of 0.6 m/s and the results were used to validate the results from a commercial computational fluid dynamics (CFD) code ANSYS-cfx. Finally, a full-scale DST was modeled to study the flow characteristics in the turbine and the performance characteristics. The maximum efficiency of the turbine is around 50% at the tip speed ratio (TSR) of 3.5 and the maximum shaft power obtained is 10 kW at the rated speed of 1.15 m/s and around 65 kW at a freestream velocity of 2.15 m/s. The stress distribution on the ducted turbine was also obtained.

References

1.
Energy Fiji Ltd.
,
2016
, “
EFL Annual Report 2015
,” Suva, Republic of Fiji, accessed Sept. 20, 2018, http://www.efl.com.fj/wp-content/uploads/2016/10/2015-Annual-Report.pdf
2.
Uihlein
,
A.
, and
Magagna
,
D.
,
2016
, “
Wave and Tidal Current Energy—A Review of the Current State of Research Beyond Technology
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1070
1081
.
3.
Lewis
,
M.
,
Neill
,
S. P.
, and
Hashemi
,
M. R.
,
2015
, “
Resource Assessment for Future Generations of Tidal-Stream Energy Arrays
,”
Energy
,
83
, pp.
403
415
.
4.
Yuce
,
M. I.
, and
Muratoglu
,
A.
,
2015
, “
Hydrokinetic Energy Conversion Systems: A Technology Status Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
72
82
.
5.
Bonar
,
P. A. J.
,
Bryden
,
I. G.
, and
Borthwick
,
A. G. L.
,
2015
, “
Social and Ecological Impacts of Marine Energy Development
,”
Renewable Sustainable Energy Rev.
,
47
, pp.
486
495
.
6.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2008
, “
The Prediction of Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
,
33
(
5
), pp.
1085
1096
.
7.
Sale
,
D.
,
Jolman
,
J.
, and
Musial
,
W.
,
2009
, “
Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotor
,” ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, May 31–June 5.
8.
Nicholls-Lee
,
R. F.
,
Turnock
,
S. R.
, and
Boyd
,
S. W.
,
2008
, “
Simulation Based Optimisation of Marine Current Turbine Blades
,”
Seventh International Conference on Computer and IT Applications in the Maritime Industries
, Liège, Belgium, Apr. 21--23, pp. 314-328.
9.
Goundar
,
J. N.
, and
Ahmed
,
M. R.
,
2014
, “
Marine Current Energy Resource Assessment and Design of a Marine Current Turbine for Fiji
,”
Renewable Energy
,
65
, pp.
14
22
.
10.
Gu
,
Y. J.
,
Yin
,
X. X.
,
Liu
,
H. W.
,
Li
,
W.
, and
Lin
,
Y. G.
,
2015
, “
Fuzzy Terminal Sliding Mode Control for Extracting Maximum Marine Current Energy
,”
Energy
,
90
(
1
), pp.
258
265
.
11.
Maganga
,
F.
,
Germain
,
G.
,
King
,
J.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2010
, “
Experimental Characterisation of Flow Effects on Marine Current Turbine Behaviour and on Its Wake Properties
,”
IET Renewable Power Gener.
,
4
(
6
), pp.
498
509
.
12.
Zhu
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
.
13.
Shigettomi
,
A.
,
Murai
,
Y.
,
Tasaka
,
Y.
, and
Takeda
,
Y.
,
2011
, “
Interactive Flow Field Around Two Savonius Turbines
,”
Renewable Energy
,
36
(
2
), pp.
536
545
.
14.
Saha
,
U. K.
, and
Rajkumar
,
M. J.
,
2006
, “
On the Performance Analysis of Savonius Rotor With Twisted Blades
,”
Renewable Energy
,
31
(
11
), pp.
1776
1788
.
15.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigation on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
16.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thevenin
,
D.
,
2010
, “
Optimisation of Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Renewable Energy
,
35
(
11
), pp.
2618
2626
.
17.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
.
18.
Coiro
,
D. P.
,
2012
, “
Development of Innovative Tidal Current Energy Converters: From Research to Deployment
,”
Second Asia-Pacific Forum on Renewable Energy
, Jeju, South Korea, Paper No. O-ME-002.
19.
Khunthongjan
,
P.
, and
Janyalertadun
,
A.
,
2012
, “
A Study of Diffuser Angle Effect on Ducted Water Current Turbine Performance Using CFD
,”
Songklanakarin J. Sci. Technol.
,
34
(1), pp.
61
67
.http://rdo.psu.ac.th/sjstweb/journal/34-1/0125-3395-34-1-61-67.pdf
20.
Kirke
,
B. K.
,
2011
, “
Tests on Ducted and Bare Helical and Straight Blade Darrieus Hydrokinetic Turbines
,”
Renewable Energy
,
36
(
11
), pp.
3013
3022
.
21.
Kim
,
K. P.
,
Ahmed
,
M. R.
, and
Lee
,
Y. H.
,
2012
, “
Efficiency Improvement of a Tidal Current Turbine Utilizing a Larger Area of Channel
,”
Renewable Energy
,
48
, pp.
557
564
.
22.
Shives
,
M.
, and
Crawford
,
C.
,
2010
, “
Overall Efficiency of Ducted Tidal Current Turbines
,”
OCEANS
2010 MTS/IEEE Seattle Conference and Exhibition
, Seattle, WA, Sept. 20–23.
23.
McSherry
,
R.
,
Grimwade
,
J.
,
Jones
,
I.
,
Mathias
,
S.
,
Wells
,
A.
, and
Mateus
,
A.
,
2011
, “
3D CFD Modelling of Tidal Turbine Performance With Validation Against Laboratory Experiments
,”
Ninth European Wave and Tidal Energy Conference
, Southampton, UK, Sept. 5–9, Paper No. 228.
24.
Harrison
,
M. E.
,
Batten
,
W. M. J.
,
Myers
,
L. E.
, and
Bahaj
,
A. S.
,
2009
, “
A Comparison Between CFD and Experiments for Predicting the Far Wake of Horizontal Axis Tidal Turbines
,”
Eighth European Wave and Tidal Energy Conference
, Uppsala, Sweden, pp. 565–575.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.5603&rep=rep1&type=pdf
25.
Lain
,
S.
, and
Osorio
,
C.
,
2010
, “
Simulation and Evaluation of a Straight-Bladed Darrieus—Type Cross Flow Marine Turbine
,”
J. Sci. Ind. Res.
,
69
(
12
), pp.
906
912
.http://nopr.niscair.res.in/handle/123456789/10657
26.
Consul
,
C. A.
,
Willden
,
R. H. H.
,
Ferrer
,
E.
, and
McCulloch
,
M. D.
,
2009
, “
Influence of Solidity on the Performance of a Cross Flow Turbine
,”
Eighth European Wave and Tidal Energy Conference
, Uppsala, Sweden, pp. 484–493.https://www.researchgate.net/publication/265993246_Influence_of_Solidity_on_the_Performance_of_a_Cross-Flow_Turbine
27.
Garrett
,
C.
, and
Cummins
,
P.
,
2007
, “
The Efficiency of a Turbine in a Tidal Channel
,”
J. Fluid Mech.
,
588
, pp.
243
251
.
28.
Li
,
Y.
,
2014
, “
On the Definition of the Power Coefficient of Tidal Current Turbines and Efficiency of Tidal Current Turbine Farms
,”
Renewable Energy
,
68
, pp.
868
875
.
29.
Akwa
,
V. A.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
30.
Kumar
,
A.
, and
Saini
,
R. P.
,
2016
, “
Performance Parameters of Savonius Type Hydrokinetic Turbine—A Review
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
289
310
.
31.
Mason-Jones
,
A.
,
O'Doherty
,
D. M.
,
Morris
,
C. E.
,
O'Doherty
,
T.
,
Byrne
,
C. B.
,
Prickett
,
P. W.
,
Grosvenor
,
R. I.
,
Owen
,
I.
,
Tedds
,
S.
, and
Poole
,
R. J.
,
2012
, “
Non-Dimensional Scaling of Tidal Stream Turbines
,”
Energy
,
44
(
1
), pp.
820
829
.
32.
Li
,
Y.
, and
Calisal
,
S. M.
,
2010
, “
Modeling of Twin-Turbine Systems With Vertical Axis Tidal Current Turbines—Part I: Power Output
,”
Ocean Eng.
,
37
(
7
), pp.
627
637
.
You do not currently have access to this content.