Fluid structure interaction (FSI) simulations of the NREL 5 MW wind turbine are performed using a combination of two separate computational codes: abaqus for the finite element analysis (FEA) of turbine structures and STAR-CCM+ for the unsteady Reynolds-averaged Navier–Stokes analysis of flow around the turbine. The main aim of this study is to demonstrate the feasibility of using two-way coupled FSI simulations to predict the oscillation of the tower, as well as the rotor blades, of a full-scale wind turbine. Although the magnitude of the oscillation of the tower is much smaller than that of the blades, this oscillation is crucial for the assessment of the fatigue life of the tower. In this first part of the paper, the aerodynamic characteristics of the turbine predicted by the two-way coupled FSI simulations are discussed in comparison with those predicted by Reynolds-averaged Navier–Stokes simulations of a rigid turbine. Also, two different computational domains with a cross-sectional size of 2D × 2D and 4D × 4D (where D is the rotor diameter) are employed to investigate the blockage effect. The fatigue life assessment of the turbine is planned to be reported in the second part of the paper in the near future.

References

References
1.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Artic. Press Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.
2.
Brebbia
,
C. A.
, and
Rodríguez
,
G. R.
, and
2013
,
Fluid Structure Interaction VII
,
Wessex Institute of Technology Press
, Southampton, UK.
3.
Szabó
,
G.
, and
Györgyi
,
J.
,
2009
, “
Three-Dimensional Fluid-Structure Interaction Analysis for Bridge Aeroelasticity
,”
Proc. World Congr. Eng. Comput. Sci.
, San Francisco, CA, Oct. 22–24, p. 6.http://www.iaeng.org/publication/WCECS2009/WCECS2009_pp892-897.pdf
4.
Tezduyar
,
T.
, and
Osawa
,
Y.
,
2001
, “
Fluid–Structure Interactions of a Parachute Crossing the Far Wake of an Aircraft
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
6–7
), pp.
717
726
.
5.
Gerbeau
,
J. F.
,
Vidrascu
,
M.
, and
Frey
,
P.
,
2005
, “
Fluid-Structure Interaction in Blood Flows on Geometries Based on Medical Imaging
,”
Comput. Struct.
, 83(
2–3
), pp.
155
165
.
6.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Zhang
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Fluid–Structure Interaction Analysis With Applications to Arterial Blood Flow
,”
Comput. Mech.
,
38
(
4–5
), pp.
310
322
.
7.
Bungartz
,
H.-J.
,
Mehl
,
M.
, and
Schäfer
,
M.
,
2010
,
Fluid Structure Interaction II: Modelling, Simulation, Optimization
,
Springer
, Heidelberg, Germany.
8.
Blom
,
F. J.
,
1998
, “
A Monolithical Fluid-Structure Interaction Algorithm Applied to the Piston Problem
,”
Comput. Methods Appl. Mech. Eng.
,
167
(
3–4
), pp.
369
391
.
9.
Felippa
,
C. A.
,
Park
,
K. C.
, and
Farhat
,
C.
,
2001
, “
Partitioned Analysis of Coupled Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
24–25
), pp.
3247
3270
.
10.
Degroote
,
J.
,
Bruggeman
,
P.
,
Haelterman
,
R.
, and
Vierendeels
,
J.
,
2008
, “
Stability of a Coupling Technique for Partitioned Solvers in FSI Applications
,”
Comput. Struct.
,
86
(
23–24
), pp.
2224
2234
.
11.
Michler
,
C.
,
Hulshoff
,
S. J.
,
Brummelen
,
E. H.
, and
Borst
,
R.
,
2004
, “
A Monolithic Approach to Fluid–Structure Interaction
,”
Comput. Fluids
,
33
(
5–6
), pp.
839
848
.
12.
CD-Adapco, 2016, “
STAR-CCM+ 11.0 User Guide
,” CD-Adapco, Inc., Melville, NY.
13.
Nishino
,
T.
, and
Draper
,
S.
,
2015
, “
Local Blockage Effect for Wind Turbines
,”
J. Phys.: Conf. Ser.
, 625(Conf. 1), p.
012010
.
14.
Glauert
,
H.
,
1935
, “
Airplane Propellers
,”
Aerodynamic Theory
,
Springer, Berlin/Heidelberg
, pp.
169
360
.
15.
Nishino
,
T.
, and
Willden
,
R. H. J.
,
2012
, “
Effects of 3D Channel Blockage and Turbulent Wake Mixing on the Limit of Power Extraction by Tidal Turbines
,”
Int. J. Heat Fluid Flow
,
37
, pp.
123
135
.
16.
McTavish
,
S.
,
Feszty
,
D.
, and
Nitzsche
,
F.
,
2014
, “
An Experimental and Computational Assessment of Blockage Effects on Wind Turbine Wake Development
,”
Wind Energy
,
17
(
10
), pp.
1515
1529
.
17.
Sarlak
,
H.
,
Nishino
,
T.
,
Martínez-Tossas
,
L. A.
,
Meneveau
,
C.
, and
Sørensen
,
J. N.
,
2016
, “
Assessment of Blockage Effects on the Wake Characteristics and Power of Wind Turbines
,”
Renewable Energy
,
93
, pp.
340
352
.
18.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale—Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer Methods Fluids
,
65
, pp.
207
235
.
19.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale—Part II: Fluid–Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer Methods Fluids
,
65
, pp.
236
253
.
20.
Hsu
,
M. C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modelling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(
6
), pp.
821
833
.
21.
Donea
,
J.
,
Giuliani
,
S.
, and
Halleux
,
J. P.
,
1982
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Transient Dynamic Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(
1–3
), pp.
689
723
.
22.
Farhat
,
C.
, and
Lin
,
T. Y.
,
1990
, “
Transient Aeroelastic Computations Using Multiple Moving Frames of Reference
,”
AIAA
Paper No. AIAA-90-3053-CP.
23.
Tezduyar
,
T. E.
,
Behr
,
M.
, and
Liou
,
J.
,
1992
, “
A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces-the Deforming-Spatial-Domain/Space-Time Procedure—I: The Concept and the Preliminary Numerical Tests
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
3
), pp.
339
351
.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.
25.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2007
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
26.
ABAQUS Inc., 2012, “
Version 6.12 Documentation ABAQUS/CAE User's Manual
,” Pawtucket, RI.
27.
Borouji
,
E.
, and
Nishino
,
T.
, “
Fluid Structure Interaction Simulations of the NREL 5 MW Wind Turbine—Part II: Fatigue Life Assessment
,” (accepted).
28.
Berry
,
D.
,
2007
, “
Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100
,” Sandia National Laboratory, Albuquerque, NM, Report No.
SAND2007-0201
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2007/070201.pdf
29.
Timmer
,
W. A.
,
2008
, “
Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA0018
,”
Wind Eng.
,
32
(
6
), pp.
525
537
.
You do not currently have access to this content.